Module: Process Design and Optimization

<table>
<thead>
<tr>
<th>Code</th>
<th>MLS_S03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree Program</td>
<td>Master of Science in Life Sciences (MSLS)</td>
</tr>
<tr>
<td>Cluster</td>
<td>Chemistry</td>
</tr>
<tr>
<td>Specialization</td>
<td>Chemical Development and Production</td>
</tr>
<tr>
<td>ECTS Credits</td>
<td>4</td>
</tr>
<tr>
<td>Workload</td>
<td>120 h: Contact 56 lessons = 42 h; Self-study 78 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module Coordinator</th>
<th>Name</th>
<th>Dr. Michal Dabros</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phone</td>
<td>+41 (0)26 429 68 79</td>
<td></td>
</tr>
<tr>
<td>Email</td>
<td>michal.dabros@hefr.ch</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>Haute école d’ingénierie et d’architecture de Fribourg Bd de Pérolles 80, CH-1700 Fribourg</td>
<td></td>
</tr>
</tbody>
</table>

| **Lecturers** | • Dr. Michal Dabros, HEIA-FR
• Dr. Charles Guinand, SafEcho (charles.guinand@gmail.com)
• Guest lecturer(s) |

| **Entry Requirements** | Bachelor of Science in Chemistry or in a related course of study, basic knowledge in chemical reaction techniques and modeling (Bachelor level) |

| **Learning Outcomes and Competences** | After completing the module students will be able to:
• perform experimental design for a process, analyze the results and model the response surface
• apply chemometrics to analyze and model multivariate experimental data
• use direct search methods to explore a response surface in search of a process optimum |

| **Module Content** | • Problem formulation in view of process design and optimization
• Design of Experiments (DOE) & Response Surface Methodology (RSM)
• Direct Search Methods (Nelder-Mead Simplex, Genetic Algorithms)
• Model identification by gradient methods
• On-line / at-line Spectroscopy applied to process monitoring
• Chemometrics and Multivariate Analysis (PCA, PCR, PLS) |

| **Teaching / Learning Methods** | • Lectures
• Individual and group exercises
• Invited speakers / excursion |

| **Assessment of Learning Outcome** | • Active participation in the module is required
• Mini-projects, reports / presentations: 25% of the final grade
• Final examination (oral): 75% of the final grade
• Reassessment (if final grade 3.5): oral exam or special project |
Bibliography

Documentation: http://cyberlearn.hes-so.ch (requires a login)

Language

English

Comments

The students are responsible for covering any transportation costs involved.

Last Update

17.02.2023 / Michal Dabros