

Haute Ecole Spécialisée de Suisse occidentale

Fachhochschule Westschweiz

University of Applied Sciences and Arts Western Switzerland

Master of Science HES-SO in Life Sciences

Digital Twin for growth rate prediction and control of Lactobacillus rhasmnosus cultures in fed-batch

Aris Melloni **CHEMICAL DEVELOPMENT & PRODUCTION**

EIA-FR

Advisor: Dr. Michal Dabros & Dr. Brian Freeland // In collaboration with **Dublin City University**

Introduction & Objectives

- Lactobacillus rhamnosus is widely used in biotechnology for functional foods and \bullet pharmaceuticals.
- Growth control in fed-batch cultures is essential to prevent unwanted metabolites and optimize yield.
- Traditional monitoring methods (e.g. TCD) are noisy and lack adaptability to process variations.
- Objective:
 - Implement an Artificial Neural Networks (ANN) as a digital twin of the biological system to predict growth rate (μ)
 - Integrate the ANN model into a closed-loop PI control system

Materials & Methods

- Microorganism: Lactobacillus rhamnosus LRH30
- Bioreactor: 1.8 L RALF equipped with sensor for: pH, Temperature, Dissolved Oxygen (DO), Total Cell Density (TCD), Gas analyser (Off-gas analysis: OUR, CER and RQ)
- ANN Model:
 - Implemented in Python using Keras 3
 - Training on normalized open-loop dataset (75% training, 12.5% validation, 12.5% test)

- ANN Model
 - RMSE = 0.073 h⁻¹
 - $R^2 = 0.999$
 - Carbon Emission Rate (CER) = most influential variable (SHAP analysis)
 - Better performances than the model developed by Sørensen et al. (DOI: 10.1016/j.crfs.2023.100593)

- Test with an exponential feed:
 - Less noise in signal compared to TCD probe
 - Less accuracy compared to

Entry	µ setpoint [h⁻¹]	SNR TCD Probe [-]	SNR ANN Model [-]
1	0.10	0.41	1.13
2	0.20	0.33	1.16

- A Digital Twin based controller improves growth rate control of *L. rhamnosus* in fed-batch
- PI control with ANN-based µ prediction ensures higher stability and reproducibility thanks to
 - Increasing ANN complexity/Optimize ANN architecture
 - Expanding the prediction model to other microorganisms and bigger reactor scale

