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Introduction and Objectives

Atomic Layer Deposition (ALD) is a pivotal technique for creating thin films with unparalleled precision, offering atomistic control over film thickness and conformality. Essential for manufacturing advanced
semiconductors in today's electronic devices, ALD’s capabilities are unmatched. This thesis delves into Plasma-Enhanced Atomic Layer Deposition (PEALD), an advancement that integrates a plasma
source to improve the ALD process. This innovation expands the material deposition spectrum, reduces temperatures required for deposition and enhances film quality, but also introduces new process
development challenges. This thesis aimed to understand and optimise the PEALD deposition of titanium nitride to achieve high quality film depositions on 3D structures.

Materials and Methods TOFMS investigation of TiN deposition
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Conclusion

By studying film deposition with in-situ instruments, the growth of TiN by PEALD is now better understood and the ideal process parameters for 2D depositions were found by saturation curves
experiments. The effect of the direct plasma exposure was discovered to cause uneven deposition and lower conformality in some cases. Moreover, shielding the substrate was found to drastically
enhance film uniformity on flat wafers. Overall, the deposition of high-density crystalline titanium nitride proved successful on 2D and simple 3D geometries. However, the film properties were found
to significantly degrade inside high AR structures. Finally, additional research on high AR structures investigating deposition temperature and using longer exposure times could yield better results.
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