

Master of Science HES-SO in Life Sciences

Opportunities and challenges of applying single-atom heterogeneous catalysts in the formation of Si-O bonds

Camille Blanchy CHEMICAL DEVELOPMENT & PRODUCTION HEIA-FR

Advisor: Dr. Roger Marti. Expert: Dr. Sharon Mitchell and Dario Poier // In collaboration with ETHZ

DESCRIPTION

- Transition-metal homogeneous catalysts are widely used in fine chemistry due to their high activity and selectivity. However, their single-use and non-recyclability are major limitations for sustainable processes.
- Replacing the conventional catalysts with heterogeneous catalysts containing nanoparticles improved recyclability. However, the active sites of the catalysts exhibited low selectivity and suffered from leaching which affected their activity.^[1]
- Single-atom catalysts (SACs) have the potential to overcome the limitations of both homogeneous and heterogeneous catalysts with a view to sustainability. They have isolated monoatomic active sites that enable maximum atom utilization. In addition, they can increase atom efficiency, reduce metal use, and improve catalytic selectivity during transformations.

OBJECTIFS

- Explore the synthetic potential of SACs through various reactions to understand their advantages and limitations in catalyst-based synthesis.
 - → Alcohol Oxidation
 - → Alcohol Protection
 - → Aldehyde Reduction

RESULTS

 Protection of the alcohol group with SACs has been carried out to investigate the influence of the single-atom catalyst (SAC) support material.

SACs Screening

Catalyst	Conversion ^a [%]	Yield ^b [%]	TON ^c [%]	TOFd [h-1]
Pd ₁ @AC	91	60	289	144.5
Pd ₁ @NC	23	13	73	36.5
Pd ₁ @ECN	13	14	41	20.5
Pd ₁ @PAC	77	63	245	122.5
Pt ₁ @AC	50	39	159	79.5
Au ₁ @AC	15	4	48	24
no SAC	0	0	0	0

^aConversion of benzylic alcohol 1. ^bYield of phenoxytriethylsilane 3.^cTON: mol of substrate converted/mol of active sites.^dTOF= TON/time.

Reaction Tracking

SACs stability - Flow

• Still active centers on the catalyst after 14 hours use.

CONCLUSION

- Alcohol oxidation difficult to achieve with our current catalysts.
- Benzyl alcohol protection very promising with more than 60% yield in batch.
- Flow test demonstrated their future use on a large scale, with still catalyst activity after 14 hours.
- 4-hydroxybenzyl alcohol have selectivity challenges.
- Aldehyde reduction shows activity of SACs.

Try new silanes.

Test other SACs in flow.

Try new alcohol substrates.

