<table>
<thead>
<tr>
<th>Module</th>
<th>Interdisciplinary project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>MLS-PI01</td>
</tr>
<tr>
<td>Degree Program</td>
<td>Master of Science in Life Sciences (MSLS)</td>
</tr>
<tr>
<td>Cluster</td>
<td>-</td>
</tr>
<tr>
<td>Specialization</td>
<td>Applied Biosciences</td>
</tr>
<tr>
<td></td>
<td>Chemical Development & Production</td>
</tr>
<tr>
<td></td>
<td>Viticulture & Enology</td>
</tr>
<tr>
<td>ECTS Credits</td>
<td>4</td>
</tr>
<tr>
<td>Workload</td>
<td>120 hours</td>
</tr>
<tr>
<td></td>
<td>- Contact 30;</td>
</tr>
<tr>
<td></td>
<td>- Self/Group-study 90 h</td>
</tr>
<tr>
<td>Module Coordinator</td>
<td>Name: Dr. Urban Frey</td>
</tr>
<tr>
<td></td>
<td>Phone: +41 58 900 01 10</td>
</tr>
<tr>
<td></td>
<td>Email: urban.frey@hes.so.ch</td>
</tr>
<tr>
<td></td>
<td>Address: HES-SO Master, Avenue de Provence 6, 1007 Lausanne</td>
</tr>
</tbody>
</table>

Lecturers

- Prof. Benoit Bach, Changins
- Prof. Thierry Chappuis, HEIA-FR
- Prof. Simon Crelier, HES-SO Valais-Wallis
- Prof. Thierry Heger, Changins
- Prof. Carmen Jungo Rhème, HEIA-FR
- Prof. Roger Marti, HEIA-FR
- Prof. Jean-Manuel Segura, HES-SO Valais-Wallis
- Prof. Matthias Rüdt, HES-SO Valais-Wallis
- Prof. Liming Zeng, Changins

Entry Requirements

Bachelor of Science in Life Technologies (orientation Biotechnology or Analytical Chemistry) or in a related course of study (Bachelor level)

Learning Outcomes and Competences

After completing the module students will be able to:

- Analyze the state of the art in relation to a given problem.
- Participate in the generation of new ideas for products and technologies and in the prioritization of their potential.
- Develop a multi-disciplinary feasibility study in his/her field of expertise.
- Establish a common language with partners from different fields of expertise in the context of multidisciplinary projects.
- Consolidate feedback from partners in a multidisciplinary project in the form of a set of specifications in its field of expertise.
- Assess the advantages and disadvantages of new technologies in its field of expertise/existing state of the art.
Module Content

- Carry out projects in the field of life sciences, taking into account socio-economic requirements in terms of ethics and sustainability.
- Draw up a risk mitigation plan
- Plan experiments to answer a given question.
- Write a technical-scientific report
- Manage the human, material and financial resources made available in the organizational function
- Take overall account of ethical and sustainability aspects
- Demonstrate leadership in your role by relying on your technical expertise, managerial skills and ability to make proposals

Teaching / Learning Methods

- Plurisdisciplinary group work coached by advisor(s) and relevant persons

Assessment of Learning Outcome

- Report (max. 20 pages without appendix, E/D/F) and defense with advisor and project relevant persons. Grading of work: Report (40%), Defense (30%) and Individual interview (30%)
- A declaration of authenticity, using the provided template must be signed by the students and be submitted with the report.
- Remediation: A revised report (max. 20 pages) having implemented the corrections and amendments suggested by the jury. The time allowed for the revision of the report is 4 weeks maximum.

Bibliography

-

Language

- English

Comments

- Student regulation (1st choice, 2nd choice)

Last Update

29.02.2024