

Integrating Human Expertise in Al and Robotics Systems

Dr. Emmanuel Senft Idiap Research Institute esenft@idiap.ch

Idiap Research Institute

Human-Al Teaming

Al for Life

AI for Sustainable and Resilient Societies

Al for Everyone

Human-Centered Robotics and Al group

Goal of the Talk

Present methods for integrating expert knowledge throughout a system's design process.

Human-Robot Interaction

Challenges

Cross-disciplinary applications Variety of end-users Long-term deployment

Insight

End-users are domain experts They know how systems should behave

Research Goals

Creating and evaluating technologies that can integrate **domain experts**' knowledge to make robots usable by non-roboticists.

REUTERS/Michaela Rehl https://www.nai-group.com/are-service-robotics-future https://hitconsultant.net/2018/08/06/robots-humans-caretaking

Collaborative Robotics

Robotic automation built to work **safely** with **human** workers in a **collaborative workspace**.

Flexible automation

Higher throughput Easier to repurpose

Increase safety

Access dangerous environments Reduce strain on workers

A. In-situ Programming for Collaboration

B. Shared Autonomy for Assisted Sanding

A. In-situ Programming for Collaboration

Context

Assembly task True collaboration Easy to repurpose

Challenges

Formalize an interactive behavior Ground robot behavior in changing world Program robot in situ

Deployment

• End-user programming

System

Collaborative robot

Gripping capabilities End-effector RGB-D Camera

Collaborative task

Robot reacts to human Human reacts to robot

End-User Programming

Tablet interface with robot view Annotations and programming

Method

Trigger action programming

If this *then* that *e.g., If* a box is in the green zone, *then* move it to the yellow zone

Situated programming

Human labels the workspace

Live programming Iteratively creates rules Rule #1: When **holder** is not in yellow -> **Stack** top on holder -> **bring** holder to yellow

B. Shared Autonomy for Assisted Sanding

Context

Sanding is ubiquitous in aircraft manufacturing Sanding is dangerous Offload the physical burden to a robot

Challenges

Force control Complex shapes High variability

Deployment

• End-user programming

• Corrections

Collaborative Robotics: B. Shared Autonomy for Assisted sanding

Emmany Senft - HES <u>AI Days</u>

System

Apparatus

Franka robot with a sanding tool RGB-D camera Phone with gamepad Boeing test pieces

Two workflows

Known task (registration + template) Unknown task (end-user programming)

Hagenow, M., **Senft, E.**, Radwin, R., Gleicher, M., Zinn, M., & Mutlu, B. (2024). A System for Human-Robot Teaming through End-User Programming and Shared Autonomy. Accepted at the 2024 ACM/IEEE international conference on human-robot interaction (HRI).

Method

End-user programming

Smartphone interface Task specification

Motion generation

Motion encoding with DMPs Reachability based on 3D view

Corrective shared autonomy

Layering of correction on behavior Variation in DoF provided Custom haptics

Interactive Learning for Manufacturing and Maintenance

Participatory Design

Working with operators to understand tacit knowledge Designing interfaces for AI interaction

Human-AI Dialogue

- Iterative learning of manufacturing parameters
- Interactive learning with data visualization for maintenance

Generated with Al $\,\cdot\,$ February 5, 2024 at 7:04 PM

Conclusion

Takeaways

Al and robotics can benefit from increased **input from domain experts** and **end users**.

It is important to include **end-users early** in the design process.

After deployments, **users** should be able to **shape the robot behavior** to their specific needs.

Human-AI interaction should be a **dialogue** to ensure that people can benefit from AI.

Thank you for listening. Questions?

Team

Current and past Collaborators

Previous Graduate students

Current and past funders

Dr. Emmanuel Senft - HES AI Days - 07.02.2024 | 18

LOTERI ROMAND

Crédit photo : CC BY-ND, Martigny Tourisme