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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37].  The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38].  In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40],  the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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and GBM are shown in Fig. 3. Details, including the number
of times each feature was selected and the mean variable im-
portance of the selected features during cross-validation, are
summarized in Supplemental Table 1.

The AUCs of the three radiologists were 0.707 (95 % CI
0.622–0.793), 0.759 (95 % CI 0.656–0.861), and 0.695 (95 %
CI 0.590–0.800) for readers 1, 2 and 3, respectively. The tenth
percentile of ADC was significantly lower in PCNSL than in
GBM (686.3 × 10-3 mm2/s vs. 785.2×10-3 mm2/s; p = 0.006
[Student’s t-test]), and the AUC of the tenth percentile of ADC
for differentiating between PCNSL and GBMwas 0.684 (95%
CI0.560–0.809). In comparing diagnostic performances, the
AUC of the radiomics classifier was significantly higher than
those of the three radiologists and ADC (p< 0.001 for all)
(Fig. 4). Representative cases in which diagnoses were corrected
using the radiomics approach are shown in Figs. 5 and 6.

Discussion

In this study, we assessed the diagnostic value of radiomics in
differentiating between non-necrotic enhancing GBM and
PCNSL. Atypical GBM without necrosis may not be

distinguishable from PCNSL based on gross visual inspection
of conventional MR images [6–8]. We used large-scale
radiomics to extract information from conventional MR im-
ages to detect differences that were not perceptible by visual
inspection. We found that a radiomics-based machine-learn-
ing classifier yielded excellent performance for differentiating
between PCNSL and atypical GBM, yielding higher diagnos-
tic values than visual analysis, radiologists or use of the ADC.
Given that conventional sequences are routinely used, our
results indicate that radiomics is useful for augmenting the
diagnostic performance of radiologists’ visual analyses for
differentiating between PCNSL and atypical GBM, and can
be widely performed without requiring additional scans.

Previous studies have used various techniques to discrimi-
nate between PCNSL and GBM. Several studies have reported
that PCNSL has significantly lower ADC and relative cerebral
blood volume (rCBV) values in perfusion-weighted images,
and higher Ktrans values from dynamic contrast-enhanced MR
images than GBM [10, 12, 14, 21, 22]. These results can be
explained by differences in the underlying pathophysiology
between the two disease entities. Histologically, PCNSLs have
poorer and more permeable neovascularisation, and a higher
degree of cellularity than GBMs [5, 6, 11, 21, 23, 24]. These
microscopic differences are also related to different findings in
conventionalMRI, such as necrosis in GBM and homogeneous
enhancement without necrosis in PCNSL. Therefore, even if
conventional MRI findings do not differ significantly by visual
inspection, conventional MRI may still reflect underlying,

Fig. 4 Receiver operating characteristic curve analysis of radiomics
random forest (RF) classifiers, three readers and apparent diffusion
coefficient (ADC) for the differentiation between primary central nervous
system lymphoma and atypical glioblastoma. The mean area under the
curve (AUC) for the radiomics RF classifier (0.921) was significantly
higher than those for the three readers and ADC (AUC: 0.707, 0.759,
0.695 and 0.684 for readers 1, 2, 3 andADC, respectively) (p< 0.001 for all)

Fig. 3 Heat map of the selected features of radiomics classifiers for
differentiating between primary central nervous system lymphoma
(PCNSL) and atypical glioblastoma (GBM)
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40],  the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42]. This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44]. Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40], the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42]. This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40],  the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42]. This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44]. Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.
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results  of  the  studies  included  in  the  meta-analysis  were
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as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).
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because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).
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liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42]. This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
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PERSONALIZED MEDICINE

• Goals: (A) Identify the state of a patient-disease pair and  
(B) Establish optimal treatment plan 

• Method: Compare to previously documented cases/guidelines 
in terms of multimodal data 

4

Historically, the biomarker discovery process has typically
involved the examination of potentially informative qualitative fea-
tures (such as tissue morphology) or quantitative measurements
(such as genomic, transcriptomic alterations) and their associa-
tion with clinical endpoints. For instance, standardized morpho-
logic assesment pipelines such as the the Nottingham grading
system in breast cancer (Rakha et al., 2008) and the Gleason
grading in prostate cancers (Epstein et al., 2016) was determined
through dedicated examination of thousands of histopathology
slides, revealing associations between morphological features
and patient outcome. Although the identification of each new
biomarker represents amilestone in oncology, this process faces
several challenges. Manual assessment is time and resource
intensive, often without the possibility of translating observations
from one cancer model to another. Morphologic cancer assess-
ment is often qualitative, with substantial interrater variability,
which hinders reproducibility and contributes to inconsistent out-
comes in clinical trials. Given the large complexity of medical
data, current biomarkers are mostly unimodal. However, con-
straining the biomarkers to a single modality can significantly
reduce their clinical potential. For instance, glioma patients with
similar genetic or histology profiles can have diverse outcomes
caused by macroscopic factors, such as a tumor location pre-
venting full resection and irradiation or disruption of the blood-
brain barrier, altering the efficacy of drug delivery (Miller, 2002).

Over the past years, artificial intelligence (AI) and in particular
representation learning methods have demonstrated great per-

formance in many clinically relevant tasks inclusing tasks that
are often not trivial for human observers (Bera et al., 2019; Lu et
al., 2021). AI models are able to integrate complementary infor-
mation and clinical context from diverse data sources to provide
more accurate patient predictions (Figure 1A) (Hosny et al., 2018).
The clinical insights identified by successful models can be
further elucidated through interpretability methods and quantita-
tive analysis to guide and accelerate the discovery of new bio-
markers (Figures 1C and 1D). Similarly, AI models can discover
associations across multiple modalities, such as relations be-
tween certain mutations and specific changes in cellular
morphology (Coudray et al., 2018) or associations between radi-
ology findings and histology-specific tumor subtypes (Ferreira-
Junior et al., 2020; Hyun et al., 2019) or molecular features (Yan
et al., 2021) (Figure 1B). Such associations can identify acces-
sible or non-invasive alternatives for existing biomarkers to sup-
port large-scale population screenings or selection of patients for
clinical trials (Figures 1E and 1F). In this review, we summarize AI
methods and strategies for multimodal data fusion, outline pro-
spective on AI driven exploration through multimodal associa-
tions and interpretability methods, and conclude with directions
for AI adoption in precision oncology.

AI METHODS IN ONCOLOGY

AI methods can be categorized as supervised, weakly super-
vised, or unsupervised. To highlight the concepts specific to

Figure 1. AI-driven multimodal data integration
(A and C–F) (A) AImodels can integrate complementary information and clinical context from diverse data sources to providemore accurate outcome predictions.
The clinical insights identified by such models can be further elucidated through (C) interpretability methods and (D) quantitative analysis to guide and accelerate
the discovery of new biomarkers or therapeutic targets (E and F).
(B) AI can reveal novel multimodal interconnections, such as relations between certain mutations and changes in cellular morphology or associations between
radiology findings and histology tumor subtypes or molecular features. Such associations can serve as non-invasive or cost-efficient alternatives to existing
biomarkers to support large-scale patient screening (E and F).
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PERSONALIZED MEDICINE

5

• Goals: (A) Identify the state of a patient-disease pair and  
(B) Establish optimal treatment plan 

• Method: Compare to previously documented cases/guidelines 
in terms of multimodal data 

• E.g. Multidisciplinary Tumor Boards (MTB) 

• Currently mostly based on guidelines  
and experience, confronted across  
medical/technical specialties 

• Since ~1995

https://www.ilcn.org/multidisciplinary-tumor-
boards-six-eyes-see-more-than-two/, Jan 2023

https://www.ilcn.org/multidisciplinary-tumor-boards-six-
eyes-see-more-than-two/, Feb 2024

https://www.ilcn.org/multidisciplinary-tumor-boards-six-eyes-see-more-than-two/
https://www.ilcn.org/multidisciplinary-tumor-boards-six-eyes-see-more-than-two/
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PERSONALIZED MEDICINE
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• Goals: (A) Identify the state of a patient-disease pair and  
(B) Establish optimal treatment plan 

• Method: Compare to previously documented cases/guidelines 
in terms of multimodal data 

• E.g. Multidisciplinary Tumor Boards (MTB) 

• Currently mostly based on guidelines  
and experience, confronted across  
medical/technical specialties 

• Tomorrow: AI-augmented medical  
information systems for multimodal  
information aggregation

complementary and supplementary information in modalities; if
unimodal data are noisy or incomplete, supplementing redun-
dant information from other modalities can improve the robust-
ness and accuracy of the predictions. AI-driven data fusion stra-
tegies (Baltru!saitis et al., 2018) can be divided as early, late, and
intermediate (see Figure 3).

Early fusion
Early fusion integrates information from all modalities at the input
level before feeding it into a single model. The modalities can be
represented as raw data, hand crafted, or deep features. The
joint representation is built through operations such as vector
concatenation, element-wise sum, element-wise multiplication

Figure 3. Multimodal data fusion
(A) Early fusion builds a joint representation from raw data or features at the input level, before feeding it to the model.
(B) Late fusion trains a separate model for each modality and aggregates the predictions from individual models at the decision level.
(C–E) In intermediate fusion, the prediction loss is propagated back to the feature extraction layer of each modality to iteratively learn improved feature repre-
sentations under the multimodal context. The unimodal data can be fused (C) at a single level or (D) gradually in different layers.
(E) Guided fusion allows the model to use information from one modality to guide feature extraction from another modality.
(F) Key for the symbols used.
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CLINICAL IMAGING

• Medical imaging has a central role for diagnosis, staging 
and to assess treatment response 

• Observing anatomical, morphological and functional 
characteristics of organs and lesions in many dimensions

(Continued from previous page)

analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts
with a domain knowledge that will need to go beyond that of plain imaging.

Keywords: Oncology imaging, Instrumentation, CT, MRI, Optical, SPECT, US, Sonography, Hybrid imaging, Machine
learning

Cancer and imaging – an introduction
Cancer describes a wide range of oncological diseases
that can affect all levels of a living organism and that
have, in common, the risk of becoming systemic. Cancer
is the second leading cause of death of people with
about 17 million new cases worldwide per year. Just
under 10 million people succumb to cancer every year
[1], and one in three people is affected by cancer
throughout their lifetime. The economic impact of can-
cer – from diagnosis, treatment, patient work-up and
care, to loss of work force and other societal impacts –
is thus significant and increasing; in 2010, for example,
the worldwide direct and indirect costs were estimated
to be 1.6 trillion USD, which amounted to 230 USD per
human capita [2]. Typically, overall costs of cancer ac-
count for 10%, or more of the gross domestic product
(GDP) with marked variations across countries. Given
the severe implications of disseminated cancer, early and
accurate diagnosis is of the essence.
Imaging by means of different, and frequently comple-

mentary imaging methods provides fundamental data for
diagnosing patients, studying diseases, discovering and
monitoring new therapies, and improving human health
care. As such, the adoption rate of non-invasive, medical
imaging has been increasing continuously over the past

decades [3]. These increases can be attributed to ex-
panded demand from referring physicians and patients,
as well as from technical improvements and wider avail-
ability. More specifically, modern biomedical images re-
veal structural and functional information of subjects
in vivo (Fig. 1). At a different scale, biological micros-
copy images and molecular pathways provide further
insight into tissues and living organisms, and into pro-
cesses and structures of cellular compartments [4].
Given the different types of data generated and scale of
information, new ways of integrating and using biomed-
ical information must be found [5]. In this paper, we de-
scribe important types of biomedical imaging methods
and hypothesize on their short- to mid-term develop-
ments with a focus on oncological imaging.
Figure 2 depicts a generic view on the work-up of a

patient suspected with cancer: the patient presents with
a suspicion of cancer and is referred for an imaging
examination. Here, imaging denotes the acquisition of
non-invasive visual data of extended ranges or volumes
of the subject. Conventional imaging, as indicated in the
schematics, typically includes X-ray imaging, Computed
Tomography (CT) imaging or Ultrasound (US) or Mag-
netic Resonance Imaging (MRI), and, thus, yields ana-
tomical information, which can be employed to detect,

Fig. 1 Imaging modalities together with their colour-coded ability to depict anatomical and/or functional information. For example, X-ray
imaging is purely anatomical imaging modality, PET imaging provides functional (and molecular) data, while MRI and optical imaging are capable
of providing anatomical and functional information depending on the choice of the protocol or mode of operation

Beyer et al. Cancer Imaging           (2020) 20:38 Page 2 of 38

Beyer, T et al. (2020)  
What scans we will read:  
imaging instrumentation  
trends in clinical oncology.  
BMC Cancer Imaging, 20(38).
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CLINICAL IMAGING

• Medical imaging has a central role for diagnosis, staging 
and to assess treatment response 

• “Images Are More than Pictures, They Are Data” 
Gillies RJ et al. (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278(2). 

• Multi-dimensional, quantitative (relative or absolute),  
complex tissue architectures, multiple lesions and time points
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CLINICAL IMAGING

• Medical imaging has a central role for diagnosis, staging 
and to assess treatment response 

• “Images Are More than Pictures, They Are Data” 
Gillies RJ et al. (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology, 278(2). 

• Multi-dimensional, quantitative (relative or absolute),  
complex tissue architectures, multiple lesions and time points 

• Are clinical images currently underexploited ? 

• Can AI help digesting multimodal, multidimensional,  
and multilesional quantitative imaging (in time series)  
and link them with other omics ?
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AGENDA

• Personalized medicine 

• Artificial Intelligence (AI) for medical image analysis 
• Deep learning and Radiomics  

• Fundamentals 

• Addressed tasks 

• Clinical certification status 

• Selected contributions from the CHUV/HES-SO ecosystem 
• The QuantImage v2 platform 

• The HECKTOR challenge 

• Explainable models for multiple sclerosis: 
MSxplain 

•Conclusions
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DEEP LEARNING

Deep learning• Quantitative feature extraction 

• Intensity, shape, margin, texture 

• Statistical and predictive models 

• Uni- and multi- variate

1008  D.  Groheux  et  al.

Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40],  the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42]. This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44]. Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40], the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42]. This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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IMAGE-BASED AI FOR PRECISION MEDICINE

• AI/ML-enabled medical software in Radiology and Nuc. Med. 

• Tasks 

Montagnon E et al. (2020) Deep 
learning workflow in radiology: a 
primer. Insights into imaging,11(1). 
Huang EP et al. (2022). Criteria for the 
translation of radiomics into clinically 
useful tests. Nat Rev Clin Onc, 1–14.

DEEP LEARNING - PREDICTION
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37].  The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38].  In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40], the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8)  and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%

qu
an

t. 
fe

at
. #

2

malignant, nonresponder

malignant, responder

pre-malignant

undefinedConvolutional Networks and Applications in Vision
Yann LeCun, Koray Kavukcuoglu and Clément Farabet

Computer Science Department, Courant Institute of Mathematical Sciences, New York University
{yann,koray,cfarabet}@cs.nyu.edu

Abstract— Intelligent tasks, such as visual perception, auditory
perception, and language understanding require the construction
of good internal representations of the world (or ”features”),
which must be invariant to irrelevant variations of the input
while, preserving relevant information. A major question for
Machine Learning is how to learn such good features auto-
matically. Convolutional Networks (ConvNets) are a biologically-
inspired trainable architecture that can learn invariant features.
Each stage in a ConvNets is composed of a filter bank, some
non-linearities, and feature pooling layers. With multiple stages,
a ConvNet can learn multi-level hierarchies of features. While
ConvNets have been successfully deployed in many commercial
applications from OCR to video surveillance, they require large
amounts of labeled training samples. We describe new unsu-
pervised learning algorithms, and new non-linear stages that
allow ConvNets to be trained with very few labeled samples.
Applications to visual object recognition and vision navigation
for off-road mobile robots are described.

I. LEARNING INTERNAL REPRESENTATIONS

One of the key questions of Vision Science (natural and
artificial) is how to produce good internal representations of
the visual world. What sort of internal representation would
allow an artificial vision system to detect and classify objects
into categories, independently of pose, scale, illumination,
conformation, and clutter? More interestingly, how could an
artificial vision system learn appropriate internal representa-
tions automatically, the way animals and human seem to learn
by simply looking at the world? In the time-honored approach
to computer vision (and to pattern recognition in general),
the question is avoided: internal representations are produced
by a hand-crafted feature extractor, whose output is fed to a
trainable classifier. While the issue of learning features has
been a topic of interest for many years, considerable progress
has been achieved in the last few years with the development
of so-called deep learning methods.

Good internal representations are hierarchical. In vision,
pixels are assembled into edglets, edglets into motifs, motifs
into parts, parts into objects, and objects into scenes. This
suggests that recognition architectures for vision (and for
other modalities such as audio and natural language) should
have multiple trainable stages stacked on top of each other,
one for each level in the feature hierarchy. This raises two
new questions: what to put in each stage? and how to train
such deep, multi-stage architectures? Convolutional Networks
(ConvNets) are an answer to the first question. Until recently,
the answer to the second question was to use gradient-based
supervised learning, but recent research in deep learning has
produced a number of unsupervised methods which greatly
reduce the need for labeled samples.

Convolutional Networks
Convolutional Networks [1], [2] are trainable multistage

architectures composed of multiple stages. The input and
output of each stage are sets of arrays called feature maps. For
example, if the input is a color image, each feature map would
be a 2D array containing a color channel of the input image
(for an audio input each feature map would be a 1D array,
and for a video or volumetric image, it would be a 3D array).
At the output, each feature map represents a particular feature

Fig. 1. A typical ConvNet architecture with two feature stages

extracted at all locations on the input. Each stage is composed
of three layers: a filter bank layer, a non-linearity layer, and a
feature pooling layer. A typical ConvNet is composed of one,
two or three such 3-layer stages, followed by a classification
module. Each layer type is now described for the case of image
recognition.
Filter Bank Layer - F : the input is a 3D array with n1 2D
feature maps of size n2×n3. Each component is denoted xijk,
and each feature map is denoted xi. The output is also a 3D
array, y composed of m1 feature maps of size m2 × m3. A
trainable filter (kernel) kij in the filter bank has size l1 × l2
and connects input feature map xi to output feature map yj .
The module computes yj = bj +

∑
i kij ∗ xi where ∗ is

the 2D discrete convolution operator and bj is a trainable
bias parameter. Each filter detects a particular feature at every
location on the input. Hence spatially translating the input of
a feature detection layer will translate the output but leave it
otherwise unchanged.
Non-Linearity Layer: In traditional ConvNets this simply
consists in a pointwise tanh() sigmoid function applied to
each site (ijk). However, recent implementations have used
more sophisticated non-linearities. A useful one for natural im-
age recognition is the rectified sigmoid Rabs: abs(gi.tanh())
where gi is a trainable gain parameter. The rectified sigmoid is
sometimes followed by a subtractive and divisive local normal-
ization N , which enforces local competition between adjacent
features in a feature map, and between features at the same
spatial location. The subtractive normalization operation for a
given site xijk computes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q,

where wpq is a normalized truncated Gaussian weighting
window (typically of size 9x9). The divisive normalization
computes yijk = vijk/max(mean(σjk),σjk) where σjk =
(
∑

ipq wpq.v2
i,j+p,k+q)

1/2. The local contrast normalization
layer is inspired by visual neuroscience models [3], [4].
Feature Pooling Layer: This layer treats each feature map
separately. In its simplest instance, called PA, it computes
the average values over a neighborhood in each feature map.
The neighborhoods are stepped by a stride larger than 1
(but smaller than or equal the pooling neighborhood). This
results in a reduced-resolution output feature map which is
robust to small variations in the location of features in the
previous layer. The average operation is sometimes replaced
by a max PM . Traditional ConvNets use a pointwise tanh()
after the pooling layer, but more recent models do not. Some
ConvNets dispense with the separate pooling layer entirely, but
use strides larger than one in the filter bank layer to reduce
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37].  The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38].  In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40],  the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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while, preserving relevant information. A major question for
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I. LEARNING INTERNAL REPRESENTATIONS

One of the key questions of Vision Science (natural and
artificial) is how to produce good internal representations of
the visual world. What sort of internal representation would
allow an artificial vision system to detect and classify objects
into categories, independently of pose, scale, illumination,
conformation, and clutter? More interestingly, how could an
artificial vision system learn appropriate internal representa-
tions automatically, the way animals and human seem to learn
by simply looking at the world? In the time-honored approach
to computer vision (and to pattern recognition in general),
the question is avoided: internal representations are produced
by a hand-crafted feature extractor, whose output is fed to a
trainable classifier. While the issue of learning features has
been a topic of interest for many years, considerable progress
has been achieved in the last few years with the development
of so-called deep learning methods.

Good internal representations are hierarchical. In vision,
pixels are assembled into edglets, edglets into motifs, motifs
into parts, parts into objects, and objects into scenes. This
suggests that recognition architectures for vision (and for
other modalities such as audio and natural language) should
have multiple trainable stages stacked on top of each other,
one for each level in the feature hierarchy. This raises two
new questions: what to put in each stage? and how to train
such deep, multi-stage architectures? Convolutional Networks
(ConvNets) are an answer to the first question. Until recently,
the answer to the second question was to use gradient-based
supervised learning, but recent research in deep learning has
produced a number of unsupervised methods which greatly
reduce the need for labeled samples.

Convolutional Networks
Convolutional Networks [1], [2] are trainable multistage

architectures composed of multiple stages. The input and
output of each stage are sets of arrays called feature maps. For
example, if the input is a color image, each feature map would
be a 2D array containing a color channel of the input image
(for an audio input each feature map would be a 1D array,
and for a video or volumetric image, it would be a 3D array).
At the output, each feature map represents a particular feature

Fig. 1. A typical ConvNet architecture with two feature stages

extracted at all locations on the input. Each stage is composed
of three layers: a filter bank layer, a non-linearity layer, and a
feature pooling layer. A typical ConvNet is composed of one,
two or three such 3-layer stages, followed by a classification
module. Each layer type is now described for the case of image
recognition.
Filter Bank Layer - F : the input is a 3D array with n1 2D
feature maps of size n2×n3. Each component is denoted xijk,
and each feature map is denoted xi. The output is also a 3D
array, y composed of m1 feature maps of size m2 × m3. A
trainable filter (kernel) kij in the filter bank has size l1 × l2
and connects input feature map xi to output feature map yj .
The module computes yj = bj +

∑
i kij ∗ xi where ∗ is

the 2D discrete convolution operator and bj is a trainable
bias parameter. Each filter detects a particular feature at every
location on the input. Hence spatially translating the input of
a feature detection layer will translate the output but leave it
otherwise unchanged.
Non-Linearity Layer: In traditional ConvNets this simply
consists in a pointwise tanh() sigmoid function applied to
each site (ijk). However, recent implementations have used
more sophisticated non-linearities. A useful one for natural im-
age recognition is the rectified sigmoid Rabs: abs(gi.tanh())
where gi is a trainable gain parameter. The rectified sigmoid is
sometimes followed by a subtractive and divisive local normal-
ization N , which enforces local competition between adjacent
features in a feature map, and between features at the same
spatial location. The subtractive normalization operation for a
given site xijk computes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q,

where wpq is a normalized truncated Gaussian weighting
window (typically of size 9x9). The divisive normalization
computes yijk = vijk/max(mean(σjk),σjk) where σjk =
(
∑

ipq wpq.v2
i,j+p,k+q)

1/2. The local contrast normalization
layer is inspired by visual neuroscience models [3], [4].
Feature Pooling Layer: This layer treats each feature map
separately. In its simplest instance, called PA, it computes
the average values over a neighborhood in each feature map.
The neighborhoods are stepped by a stride larger than 1
(but smaller than or equal the pooling neighborhood). This
results in a reduced-resolution output feature map which is
robust to small variations in the location of features in the
previous layer. The average operation is sometimes replaced
by a max PM . Traditional ConvNets use a pointwise tanh()
after the pooling layer, but more recent models do not. Some
ConvNets dispense with the separate pooling layer entirely, but
use strides larger than one in the filter bank layer to reduce
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a SUV  threshold  of  2.5  [37].  The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40], the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38].  In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40],  the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42]. This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
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as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).
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Abstract— Intelligent tasks, such as visual perception, auditory
perception, and language understanding require the construction
of good internal representations of the world (or ”features”),
which must be invariant to irrelevant variations of the input
while, preserving relevant information. A major question for
Machine Learning is how to learn such good features auto-
matically. Convolutional Networks (ConvNets) are a biologically-
inspired trainable architecture that can learn invariant features.
Each stage in a ConvNets is composed of a filter bank, some
non-linearities, and feature pooling layers. With multiple stages,
a ConvNet can learn multi-level hierarchies of features. While
ConvNets have been successfully deployed in many commercial
applications from OCR to video surveillance, they require large
amounts of labeled training samples. We describe new unsu-
pervised learning algorithms, and new non-linear stages that
allow ConvNets to be trained with very few labeled samples.
Applications to visual object recognition and vision navigation
for off-road mobile robots are described.

I. LEARNING INTERNAL REPRESENTATIONS

One of the key questions of Vision Science (natural and
artificial) is how to produce good internal representations of
the visual world. What sort of internal representation would
allow an artificial vision system to detect and classify objects
into categories, independently of pose, scale, illumination,
conformation, and clutter? More interestingly, how could an
artificial vision system learn appropriate internal representa-
tions automatically, the way animals and human seem to learn
by simply looking at the world? In the time-honored approach
to computer vision (and to pattern recognition in general),
the question is avoided: internal representations are produced
by a hand-crafted feature extractor, whose output is fed to a
trainable classifier. While the issue of learning features has
been a topic of interest for many years, considerable progress
has been achieved in the last few years with the development
of so-called deep learning methods.

Good internal representations are hierarchical. In vision,
pixels are assembled into edglets, edglets into motifs, motifs
into parts, parts into objects, and objects into scenes. This
suggests that recognition architectures for vision (and for
other modalities such as audio and natural language) should
have multiple trainable stages stacked on top of each other,
one for each level in the feature hierarchy. This raises two
new questions: what to put in each stage? and how to train
such deep, multi-stage architectures? Convolutional Networks
(ConvNets) are an answer to the first question. Until recently,
the answer to the second question was to use gradient-based
supervised learning, but recent research in deep learning has
produced a number of unsupervised methods which greatly
reduce the need for labeled samples.

Convolutional Networks
Convolutional Networks [1], [2] are trainable multistage

architectures composed of multiple stages. The input and
output of each stage are sets of arrays called feature maps. For
example, if the input is a color image, each feature map would
be a 2D array containing a color channel of the input image
(for an audio input each feature map would be a 1D array,
and for a video or volumetric image, it would be a 3D array).
At the output, each feature map represents a particular feature

Fig. 1. A typical ConvNet architecture with two feature stages

extracted at all locations on the input. Each stage is composed
of three layers: a filter bank layer, a non-linearity layer, and a
feature pooling layer. A typical ConvNet is composed of one,
two or three such 3-layer stages, followed by a classification
module. Each layer type is now described for the case of image
recognition.
Filter Bank Layer - F : the input is a 3D array with n1 2D
feature maps of size n2×n3. Each component is denoted xijk,
and each feature map is denoted xi. The output is also a 3D
array, y composed of m1 feature maps of size m2 × m3. A
trainable filter (kernel) kij in the filter bank has size l1 × l2
and connects input feature map xi to output feature map yj .
The module computes yj = bj +

∑
i kij ∗ xi where ∗ is

the 2D discrete convolution operator and bj is a trainable
bias parameter. Each filter detects a particular feature at every
location on the input. Hence spatially translating the input of
a feature detection layer will translate the output but leave it
otherwise unchanged.
Non-Linearity Layer: In traditional ConvNets this simply
consists in a pointwise tanh() sigmoid function applied to
each site (ijk). However, recent implementations have used
more sophisticated non-linearities. A useful one for natural im-
age recognition is the rectified sigmoid Rabs: abs(gi.tanh())
where gi is a trainable gain parameter. The rectified sigmoid is
sometimes followed by a subtractive and divisive local normal-
ization N , which enforces local competition between adjacent
features in a feature map, and between features at the same
spatial location. The subtractive normalization operation for a
given site xijk computes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q,

where wpq is a normalized truncated Gaussian weighting
window (typically of size 9x9). The divisive normalization
computes yijk = vijk/max(mean(σjk),σjk) where σjk =
(
∑

ipq wpq.v2
i,j+p,k+q)

1/2. The local contrast normalization
layer is inspired by visual neuroscience models [3], [4].
Feature Pooling Layer: This layer treats each feature map
separately. In its simplest instance, called PA, it computes
the average values over a neighborhood in each feature map.
The neighborhoods are stepped by a stride larger than 1
(but smaller than or equal the pooling neighborhood). This
results in a reduced-resolution output feature map which is
robust to small variations in the location of features in the
previous layer. The average operation is sometimes replaced
by a max PM . Traditional ConvNets use a pointwise tanh()
after the pooling layer, but more recent models do not. Some
ConvNets dispense with the separate pooling layer entirely, but
use strides larger than one in the filter bank layer to reduce

978-1-4244-5309-2/10/$26.00 ©2010 IEEE 253

Ronneberger, O et al. (2015) “U-Net: Convolutional Networks for Biomedical Image Segmentation.” MICCAI.

Convolutional Networks and Applications in Vision
Yann LeCun, Koray Kavukcuoglu and Clément Farabet

Computer Science Department, Courant Institute of Mathematical Sciences, New York University
{yann,koray,cfarabet}@cs.nyu.edu

Abstract— Intelligent tasks, such as visual perception, auditory
perception, and language understanding require the construction
of good internal representations of the world (or ”features”),
which must be invariant to irrelevant variations of the input
while, preserving relevant information. A major question for
Machine Learning is how to learn such good features auto-
matically. Convolutional Networks (ConvNets) are a biologically-
inspired trainable architecture that can learn invariant features.
Each stage in a ConvNets is composed of a filter bank, some
non-linearities, and feature pooling layers. With multiple stages,
a ConvNet can learn multi-level hierarchies of features. While
ConvNets have been successfully deployed in many commercial
applications from OCR to video surveillance, they require large
amounts of labeled training samples. We describe new unsu-
pervised learning algorithms, and new non-linear stages that
allow ConvNets to be trained with very few labeled samples.
Applications to visual object recognition and vision navigation
for off-road mobile robots are described.

I. LEARNING INTERNAL REPRESENTATIONS

One of the key questions of Vision Science (natural and
artificial) is how to produce good internal representations of
the visual world. What sort of internal representation would
allow an artificial vision system to detect and classify objects
into categories, independently of pose, scale, illumination,
conformation, and clutter? More interestingly, how could an
artificial vision system learn appropriate internal representa-
tions automatically, the way animals and human seem to learn
by simply looking at the world? In the time-honored approach
to computer vision (and to pattern recognition in general),
the question is avoided: internal representations are produced
by a hand-crafted feature extractor, whose output is fed to a
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such deep, multi-stage architectures? Convolutional Networks
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the answer to the second question was to use gradient-based
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extracted at all locations on the input. Each stage is composed
of three layers: a filter bank layer, a non-linearity layer, and a
feature pooling layer. A typical ConvNet is composed of one,
two or three such 3-layer stages, followed by a classification
module. Each layer type is now described for the case of image
recognition.
Filter Bank Layer - F : the input is a 3D array with n1 2D
feature maps of size n2×n3. Each component is denoted xijk,
and each feature map is denoted xi. The output is also a 3D
array, y composed of m1 feature maps of size m2 × m3. A
trainable filter (kernel) kij in the filter bank has size l1 × l2
and connects input feature map xi to output feature map yj .
The module computes yj = bj +
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the 2D discrete convolution operator and bj is a trainable
bias parameter. Each filter detects a particular feature at every
location on the input. Hence spatially translating the input of
a feature detection layer will translate the output but leave it
otherwise unchanged.
Non-Linearity Layer: In traditional ConvNets this simply
consists in a pointwise tanh() sigmoid function applied to
each site (ijk). However, recent implementations have used
more sophisticated non-linearities. A useful one for natural im-
age recognition is the rectified sigmoid Rabs: abs(gi.tanh())
where gi is a trainable gain parameter. The rectified sigmoid is
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ization N , which enforces local competition between adjacent
features in a feature map, and between features at the same
spatial location. The subtractive normalization operation for a
given site xijk computes: vijk = xijk −
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computes yijk = vijk/max(mean(σjk),σjk) where σjk =
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1/2. The local contrast normalization
layer is inspired by visual neuroscience models [3], [4].
Feature Pooling Layer: This layer treats each feature map
separately. In its simplest instance, called PA, it computes
the average values over a neighborhood in each feature map.
The neighborhoods are stepped by a stride larger than 1
(but smaller than or equal the pooling neighborhood). This
results in a reduced-resolution output feature map which is
robust to small variations in the location of features in the
previous layer. The average operation is sometimes replaced
by a max PM . Traditional ConvNets use a pointwise tanh()
after the pooling layer, but more recent models do not. Some
ConvNets dispense with the separate pooling layer entirely, but
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38].  In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40], the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37].  The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38].  In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40], the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).
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in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8)  and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%

f (y)
y

Image to prediction
Image to image

“Radiomics” for  
precision medicine: 
(Huang et al. 2022) 
- survival analysis 
- outcome prediction 
- diagnosis 
- toxicity 
- monitoring  
  (“delta radiomics”) 



IMAGE-BASED AI FOR PRECISION MEDICINE

• AI/ML-enabled medical software in Radiology and Nuc. Med. 

• Tasks 

Montagnon E et al. (2020) Deep 
learning workflow in radiology: a 
primer. Insights into imaging,11(1). 
Huang EP et al. (2022). Criteria for the 
translation of radiomics into clinically 
useful tests. Nat Rev Clin Onc, 1–14.

DEEP LEARNING - PREDICTION

1008  D.  Groheux  et  al.

Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37].  The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38].  In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40], the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8)  and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Abstract— Intelligent tasks, such as visual perception, auditory
perception, and language understanding require the construction
of good internal representations of the world (or ”features”),
which must be invariant to irrelevant variations of the input
while, preserving relevant information. A major question for
Machine Learning is how to learn such good features auto-
matically. Convolutional Networks (ConvNets) are a biologically-
inspired trainable architecture that can learn invariant features.
Each stage in a ConvNets is composed of a filter bank, some
non-linearities, and feature pooling layers. With multiple stages,
a ConvNet can learn multi-level hierarchies of features. While
ConvNets have been successfully deployed in many commercial
applications from OCR to video surveillance, they require large
amounts of labeled training samples. We describe new unsu-
pervised learning algorithms, and new non-linear stages that
allow ConvNets to be trained with very few labeled samples.
Applications to visual object recognition and vision navigation
for off-road mobile robots are described.

I. LEARNING INTERNAL REPRESENTATIONS

One of the key questions of Vision Science (natural and
artificial) is how to produce good internal representations of
the visual world. What sort of internal representation would
allow an artificial vision system to detect and classify objects
into categories, independently of pose, scale, illumination,
conformation, and clutter? More interestingly, how could an
artificial vision system learn appropriate internal representa-
tions automatically, the way animals and human seem to learn
by simply looking at the world? In the time-honored approach
to computer vision (and to pattern recognition in general),
the question is avoided: internal representations are produced
by a hand-crafted feature extractor, whose output is fed to a
trainable classifier. While the issue of learning features has
been a topic of interest for many years, considerable progress
has been achieved in the last few years with the development
of so-called deep learning methods.

Good internal representations are hierarchical. In vision,
pixels are assembled into edglets, edglets into motifs, motifs
into parts, parts into objects, and objects into scenes. This
suggests that recognition architectures for vision (and for
other modalities such as audio and natural language) should
have multiple trainable stages stacked on top of each other,
one for each level in the feature hierarchy. This raises two
new questions: what to put in each stage? and how to train
such deep, multi-stage architectures? Convolutional Networks
(ConvNets) are an answer to the first question. Until recently,
the answer to the second question was to use gradient-based
supervised learning, but recent research in deep learning has
produced a number of unsupervised methods which greatly
reduce the need for labeled samples.

Convolutional Networks
Convolutional Networks [1], [2] are trainable multistage

architectures composed of multiple stages. The input and
output of each stage are sets of arrays called feature maps. For
example, if the input is a color image, each feature map would
be a 2D array containing a color channel of the input image
(for an audio input each feature map would be a 1D array,
and for a video or volumetric image, it would be a 3D array).
At the output, each feature map represents a particular feature

Fig. 1. A typical ConvNet architecture with two feature stages

extracted at all locations on the input. Each stage is composed
of three layers: a filter bank layer, a non-linearity layer, and a
feature pooling layer. A typical ConvNet is composed of one,
two or three such 3-layer stages, followed by a classification
module. Each layer type is now described for the case of image
recognition.
Filter Bank Layer - F : the input is a 3D array with n1 2D
feature maps of size n2×n3. Each component is denoted xijk,
and each feature map is denoted xi. The output is also a 3D
array, y composed of m1 feature maps of size m2 × m3. A
trainable filter (kernel) kij in the filter bank has size l1 × l2
and connects input feature map xi to output feature map yj .
The module computes yj = bj +

∑
i kij ∗ xi where ∗ is

the 2D discrete convolution operator and bj is a trainable
bias parameter. Each filter detects a particular feature at every
location on the input. Hence spatially translating the input of
a feature detection layer will translate the output but leave it
otherwise unchanged.
Non-Linearity Layer: In traditional ConvNets this simply
consists in a pointwise tanh() sigmoid function applied to
each site (ijk). However, recent implementations have used
more sophisticated non-linearities. A useful one for natural im-
age recognition is the rectified sigmoid Rabs: abs(gi.tanh())
where gi is a trainable gain parameter. The rectified sigmoid is
sometimes followed by a subtractive and divisive local normal-
ization N , which enforces local competition between adjacent
features in a feature map, and between features at the same
spatial location. The subtractive normalization operation for a
given site xijk computes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q,

where wpq is a normalized truncated Gaussian weighting
window (typically of size 9x9). The divisive normalization
computes yijk = vijk/max(mean(σjk),σjk) where σjk =
(
∑

ipq wpq.v2
i,j+p,k+q)

1/2. The local contrast normalization
layer is inspired by visual neuroscience models [3], [4].
Feature Pooling Layer: This layer treats each feature map
separately. In its simplest instance, called PA, it computes
the average values over a neighborhood in each feature map.
The neighborhoods are stepped by a stride larger than 1
(but smaller than or equal the pooling neighborhood). This
results in a reduced-resolution output feature map which is
robust to small variations in the location of features in the
previous layer. The average operation is sometimes replaced
by a max PM . Traditional ConvNets use a pointwise tanh()
after the pooling layer, but more recent models do not. Some
ConvNets dispense with the separate pooling layer entirely, but
use strides larger than one in the filter bank layer to reduce
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37].  The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38].  In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40],  the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Abstract— Intelligent tasks, such as visual perception, auditory
perception, and language understanding require the construction
of good internal representations of the world (or ”features”),
which must be invariant to irrelevant variations of the input
while, preserving relevant information. A major question for
Machine Learning is how to learn such good features auto-
matically. Convolutional Networks (ConvNets) are a biologically-
inspired trainable architecture that can learn invariant features.
Each stage in a ConvNets is composed of a filter bank, some
non-linearities, and feature pooling layers. With multiple stages,
a ConvNet can learn multi-level hierarchies of features. While
ConvNets have been successfully deployed in many commercial
applications from OCR to video surveillance, they require large
amounts of labeled training samples. We describe new unsu-
pervised learning algorithms, and new non-linear stages that
allow ConvNets to be trained with very few labeled samples.
Applications to visual object recognition and vision navigation
for off-road mobile robots are described.

I. LEARNING INTERNAL REPRESENTATIONS

One of the key questions of Vision Science (natural and
artificial) is how to produce good internal representations of
the visual world. What sort of internal representation would
allow an artificial vision system to detect and classify objects
into categories, independently of pose, scale, illumination,
conformation, and clutter? More interestingly, how could an
artificial vision system learn appropriate internal representa-
tions automatically, the way animals and human seem to learn
by simply looking at the world? In the time-honored approach
to computer vision (and to pattern recognition in general),
the question is avoided: internal representations are produced
by a hand-crafted feature extractor, whose output is fed to a
trainable classifier. While the issue of learning features has
been a topic of interest for many years, considerable progress
has been achieved in the last few years with the development
of so-called deep learning methods.

Good internal representations are hierarchical. In vision,
pixels are assembled into edglets, edglets into motifs, motifs
into parts, parts into objects, and objects into scenes. This
suggests that recognition architectures for vision (and for
other modalities such as audio and natural language) should
have multiple trainable stages stacked on top of each other,
one for each level in the feature hierarchy. This raises two
new questions: what to put in each stage? and how to train
such deep, multi-stage architectures? Convolutional Networks
(ConvNets) are an answer to the first question. Until recently,
the answer to the second question was to use gradient-based
supervised learning, but recent research in deep learning has
produced a number of unsupervised methods which greatly
reduce the need for labeled samples.

Convolutional Networks
Convolutional Networks [1], [2] are trainable multistage

architectures composed of multiple stages. The input and
output of each stage are sets of arrays called feature maps. For
example, if the input is a color image, each feature map would
be a 2D array containing a color channel of the input image
(for an audio input each feature map would be a 1D array,
and for a video or volumetric image, it would be a 3D array).
At the output, each feature map represents a particular feature

Fig. 1. A typical ConvNet architecture with two feature stages

extracted at all locations on the input. Each stage is composed
of three layers: a filter bank layer, a non-linearity layer, and a
feature pooling layer. A typical ConvNet is composed of one,
two or three such 3-layer stages, followed by a classification
module. Each layer type is now described for the case of image
recognition.
Filter Bank Layer - F : the input is a 3D array with n1 2D
feature maps of size n2×n3. Each component is denoted xijk,
and each feature map is denoted xi. The output is also a 3D
array, y composed of m1 feature maps of size m2 × m3. A
trainable filter (kernel) kij in the filter bank has size l1 × l2
and connects input feature map xi to output feature map yj .
The module computes yj = bj +

∑
i kij ∗ xi where ∗ is

the 2D discrete convolution operator and bj is a trainable
bias parameter. Each filter detects a particular feature at every
location on the input. Hence spatially translating the input of
a feature detection layer will translate the output but leave it
otherwise unchanged.
Non-Linearity Layer: In traditional ConvNets this simply
consists in a pointwise tanh() sigmoid function applied to
each site (ijk). However, recent implementations have used
more sophisticated non-linearities. A useful one for natural im-
age recognition is the rectified sigmoid Rabs: abs(gi.tanh())
where gi is a trainable gain parameter. The rectified sigmoid is
sometimes followed by a subtractive and divisive local normal-
ization N , which enforces local competition between adjacent
features in a feature map, and between features at the same
spatial location. The subtractive normalization operation for a
given site xijk computes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q,

where wpq is a normalized truncated Gaussian weighting
window (typically of size 9x9). The divisive normalization
computes yijk = vijk/max(mean(σjk),σjk) where σjk =
(
∑

ipq wpq.v2
i,j+p,k+q)

1/2. The local contrast normalization
layer is inspired by visual neuroscience models [3], [4].
Feature Pooling Layer: This layer treats each feature map
separately. In its simplest instance, called PA, it computes
the average values over a neighborhood in each feature map.
The neighborhoods are stepped by a stride larger than 1
(but smaller than or equal the pooling neighborhood). This
results in a reduced-resolution output feature map which is
robust to small variations in the location of features in the
previous layer. The average operation is sometimes replaced
by a max PM . Traditional ConvNets use a pointwise tanh()
after the pooling layer, but more recent models do not. Some
ConvNets dispense with the separate pooling layer entirely, but
use strides larger than one in the filter bank layer to reduce
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a SUV  threshold  of  2.5  [37].  The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40], the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38].  In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40],  the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42]. This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.
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sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
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Abstract— Intelligent tasks, such as visual perception, auditory
perception, and language understanding require the construction
of good internal representations of the world (or ”features”),
which must be invariant to irrelevant variations of the input
while, preserving relevant information. A major question for
Machine Learning is how to learn such good features auto-
matically. Convolutional Networks (ConvNets) are a biologically-
inspired trainable architecture that can learn invariant features.
Each stage in a ConvNets is composed of a filter bank, some
non-linearities, and feature pooling layers. With multiple stages,
a ConvNet can learn multi-level hierarchies of features. While
ConvNets have been successfully deployed in many commercial
applications from OCR to video surveillance, they require large
amounts of labeled training samples. We describe new unsu-
pervised learning algorithms, and new non-linear stages that
allow ConvNets to be trained with very few labeled samples.
Applications to visual object recognition and vision navigation
for off-road mobile robots are described.

I. LEARNING INTERNAL REPRESENTATIONS

One of the key questions of Vision Science (natural and
artificial) is how to produce good internal representations of
the visual world. What sort of internal representation would
allow an artificial vision system to detect and classify objects
into categories, independently of pose, scale, illumination,
conformation, and clutter? More interestingly, how could an
artificial vision system learn appropriate internal representa-
tions automatically, the way animals and human seem to learn
by simply looking at the world? In the time-honored approach
to computer vision (and to pattern recognition in general),
the question is avoided: internal representations are produced
by a hand-crafted feature extractor, whose output is fed to a
trainable classifier. While the issue of learning features has
been a topic of interest for many years, considerable progress
has been achieved in the last few years with the development
of so-called deep learning methods.

Good internal representations are hierarchical. In vision,
pixels are assembled into edglets, edglets into motifs, motifs
into parts, parts into objects, and objects into scenes. This
suggests that recognition architectures for vision (and for
other modalities such as audio and natural language) should
have multiple trainable stages stacked on top of each other,
one for each level in the feature hierarchy. This raises two
new questions: what to put in each stage? and how to train
such deep, multi-stage architectures? Convolutional Networks
(ConvNets) are an answer to the first question. Until recently,
the answer to the second question was to use gradient-based
supervised learning, but recent research in deep learning has
produced a number of unsupervised methods which greatly
reduce the need for labeled samples.

Convolutional Networks
Convolutional Networks [1], [2] are trainable multistage

architectures composed of multiple stages. The input and
output of each stage are sets of arrays called feature maps. For
example, if the input is a color image, each feature map would
be a 2D array containing a color channel of the input image
(for an audio input each feature map would be a 1D array,
and for a video or volumetric image, it would be a 3D array).
At the output, each feature map represents a particular feature

Fig. 1. A typical ConvNet architecture with two feature stages

extracted at all locations on the input. Each stage is composed
of three layers: a filter bank layer, a non-linearity layer, and a
feature pooling layer. A typical ConvNet is composed of one,
two or three such 3-layer stages, followed by a classification
module. Each layer type is now described for the case of image
recognition.
Filter Bank Layer - F : the input is a 3D array with n1 2D
feature maps of size n2×n3. Each component is denoted xijk,
and each feature map is denoted xi. The output is also a 3D
array, y composed of m1 feature maps of size m2 × m3. A
trainable filter (kernel) kij in the filter bank has size l1 × l2
and connects input feature map xi to output feature map yj .
The module computes yj = bj +

∑
i kij ∗ xi where ∗ is

the 2D discrete convolution operator and bj is a trainable
bias parameter. Each filter detects a particular feature at every
location on the input. Hence spatially translating the input of
a feature detection layer will translate the output but leave it
otherwise unchanged.
Non-Linearity Layer: In traditional ConvNets this simply
consists in a pointwise tanh() sigmoid function applied to
each site (ijk). However, recent implementations have used
more sophisticated non-linearities. A useful one for natural im-
age recognition is the rectified sigmoid Rabs: abs(gi.tanh())
where gi is a trainable gain parameter. The rectified sigmoid is
sometimes followed by a subtractive and divisive local normal-
ization N , which enforces local competition between adjacent
features in a feature map, and between features at the same
spatial location. The subtractive normalization operation for a
given site xijk computes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q,

where wpq is a normalized truncated Gaussian weighting
window (typically of size 9x9). The divisive normalization
computes yijk = vijk/max(mean(σjk),σjk) where σjk =
(
∑

ipq wpq.v2
i,j+p,k+q)

1/2. The local contrast normalization
layer is inspired by visual neuroscience models [3], [4].
Feature Pooling Layer: This layer treats each feature map
separately. In its simplest instance, called PA, it computes
the average values over a neighborhood in each feature map.
The neighborhoods are stepped by a stride larger than 1
(but smaller than or equal the pooling neighborhood). This
results in a reduced-resolution output feature map which is
robust to small variations in the location of features in the
previous layer. The average operation is sometimes replaced
by a max PM . Traditional ConvNets use a pointwise tanh()
after the pooling layer, but more recent models do not. Some
ConvNets dispense with the separate pooling layer entirely, but
use strides larger than one in the filter bank layer to reduce
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bias parameter. Each filter detects a particular feature at every
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otherwise unchanged.
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separately. In its simplest instance, called PA, it computes
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(but smaller than or equal the pooling neighborhood). This
results in a reduced-resolution output feature map which is
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38].  In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40], the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.
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of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
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based  on  PET-CT  staging,  the  negative  predictive  value  for
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by  PET,  except  in  the  following  situations:  long  axis  diameter
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as  determined  by  CT,  low  uptake  by  the  primary  tumor
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proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37].  The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38].  In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40], the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8)  and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Abstract— Intelligent tasks, such as visual perception, auditory
perception, and language understanding require the construction
of good internal representations of the world (or ”features”),
which must be invariant to irrelevant variations of the input
while, preserving relevant information. A major question for
Machine Learning is how to learn such good features auto-
matically. Convolutional Networks (ConvNets) are a biologically-
inspired trainable architecture that can learn invariant features.
Each stage in a ConvNets is composed of a filter bank, some
non-linearities, and feature pooling layers. With multiple stages,
a ConvNet can learn multi-level hierarchies of features. While
ConvNets have been successfully deployed in many commercial
applications from OCR to video surveillance, they require large
amounts of labeled training samples. We describe new unsu-
pervised learning algorithms, and new non-linear stages that
allow ConvNets to be trained with very few labeled samples.
Applications to visual object recognition and vision navigation
for off-road mobile robots are described.

I. LEARNING INTERNAL REPRESENTATIONS

One of the key questions of Vision Science (natural and
artificial) is how to produce good internal representations of
the visual world. What sort of internal representation would
allow an artificial vision system to detect and classify objects
into categories, independently of pose, scale, illumination,
conformation, and clutter? More interestingly, how could an
artificial vision system learn appropriate internal representa-
tions automatically, the way animals and human seem to learn
by simply looking at the world? In the time-honored approach
to computer vision (and to pattern recognition in general),
the question is avoided: internal representations are produced
by a hand-crafted feature extractor, whose output is fed to a
trainable classifier. While the issue of learning features has
been a topic of interest for many years, considerable progress
has been achieved in the last few years with the development
of so-called deep learning methods.

Good internal representations are hierarchical. In vision,
pixels are assembled into edglets, edglets into motifs, motifs
into parts, parts into objects, and objects into scenes. This
suggests that recognition architectures for vision (and for
other modalities such as audio and natural language) should
have multiple trainable stages stacked on top of each other,
one for each level in the feature hierarchy. This raises two
new questions: what to put in each stage? and how to train
such deep, multi-stage architectures? Convolutional Networks
(ConvNets) are an answer to the first question. Until recently,
the answer to the second question was to use gradient-based
supervised learning, but recent research in deep learning has
produced a number of unsupervised methods which greatly
reduce the need for labeled samples.

Convolutional Networks
Convolutional Networks [1], [2] are trainable multistage

architectures composed of multiple stages. The input and
output of each stage are sets of arrays called feature maps. For
example, if the input is a color image, each feature map would
be a 2D array containing a color channel of the input image
(for an audio input each feature map would be a 1D array,
and for a video or volumetric image, it would be a 3D array).
At the output, each feature map represents a particular feature

Fig. 1. A typical ConvNet architecture with two feature stages

extracted at all locations on the input. Each stage is composed
of three layers: a filter bank layer, a non-linearity layer, and a
feature pooling layer. A typical ConvNet is composed of one,
two or three such 3-layer stages, followed by a classification
module. Each layer type is now described for the case of image
recognition.
Filter Bank Layer - F : the input is a 3D array with n1 2D
feature maps of size n2×n3. Each component is denoted xijk,
and each feature map is denoted xi. The output is also a 3D
array, y composed of m1 feature maps of size m2 × m3. A
trainable filter (kernel) kij in the filter bank has size l1 × l2
and connects input feature map xi to output feature map yj .
The module computes yj = bj +

∑
i kij ∗ xi where ∗ is

the 2D discrete convolution operator and bj is a trainable
bias parameter. Each filter detects a particular feature at every
location on the input. Hence spatially translating the input of
a feature detection layer will translate the output but leave it
otherwise unchanged.
Non-Linearity Layer: In traditional ConvNets this simply
consists in a pointwise tanh() sigmoid function applied to
each site (ijk). However, recent implementations have used
more sophisticated non-linearities. A useful one for natural im-
age recognition is the rectified sigmoid Rabs: abs(gi.tanh())
where gi is a trainable gain parameter. The rectified sigmoid is
sometimes followed by a subtractive and divisive local normal-
ization N , which enforces local competition between adjacent
features in a feature map, and between features at the same
spatial location. The subtractive normalization operation for a
given site xijk computes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q,

where wpq is a normalized truncated Gaussian weighting
window (typically of size 9x9). The divisive normalization
computes yijk = vijk/max(mean(σjk),σjk) where σjk =
(
∑

ipq wpq.v2
i,j+p,k+q)

1/2. The local contrast normalization
layer is inspired by visual neuroscience models [3], [4].
Feature Pooling Layer: This layer treats each feature map
separately. In its simplest instance, called PA, it computes
the average values over a neighborhood in each feature map.
The neighborhoods are stepped by a stride larger than 1
(but smaller than or equal the pooling neighborhood). This
results in a reduced-resolution output feature map which is
robust to small variations in the location of features in the
previous layer. The average operation is sometimes replaced
by a max PM . Traditional ConvNets use a pointwise tanh()
after the pooling layer, but more recent models do not. Some
ConvNets dispense with the separate pooling layer entirely, but
use strides larger than one in the filter bank layer to reduce
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37].  The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38].  In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40],  the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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perception, and language understanding require the construction
of good internal representations of the world (or ”features”),
which must be invariant to irrelevant variations of the input
while, preserving relevant information. A major question for
Machine Learning is how to learn such good features auto-
matically. Convolutional Networks (ConvNets) are a biologically-
inspired trainable architecture that can learn invariant features.
Each stage in a ConvNets is composed of a filter bank, some
non-linearities, and feature pooling layers. With multiple stages,
a ConvNet can learn multi-level hierarchies of features. While
ConvNets have been successfully deployed in many commercial
applications from OCR to video surveillance, they require large
amounts of labeled training samples. We describe new unsu-
pervised learning algorithms, and new non-linear stages that
allow ConvNets to be trained with very few labeled samples.
Applications to visual object recognition and vision navigation
for off-road mobile robots are described.

I. LEARNING INTERNAL REPRESENTATIONS

One of the key questions of Vision Science (natural and
artificial) is how to produce good internal representations of
the visual world. What sort of internal representation would
allow an artificial vision system to detect and classify objects
into categories, independently of pose, scale, illumination,
conformation, and clutter? More interestingly, how could an
artificial vision system learn appropriate internal representa-
tions automatically, the way animals and human seem to learn
by simply looking at the world? In the time-honored approach
to computer vision (and to pattern recognition in general),
the question is avoided: internal representations are produced
by a hand-crafted feature extractor, whose output is fed to a
trainable classifier. While the issue of learning features has
been a topic of interest for many years, considerable progress
has been achieved in the last few years with the development
of so-called deep learning methods.

Good internal representations are hierarchical. In vision,
pixels are assembled into edglets, edglets into motifs, motifs
into parts, parts into objects, and objects into scenes. This
suggests that recognition architectures for vision (and for
other modalities such as audio and natural language) should
have multiple trainable stages stacked on top of each other,
one for each level in the feature hierarchy. This raises two
new questions: what to put in each stage? and how to train
such deep, multi-stage architectures? Convolutional Networks
(ConvNets) are an answer to the first question. Until recently,
the answer to the second question was to use gradient-based
supervised learning, but recent research in deep learning has
produced a number of unsupervised methods which greatly
reduce the need for labeled samples.

Convolutional Networks
Convolutional Networks [1], [2] are trainable multistage

architectures composed of multiple stages. The input and
output of each stage are sets of arrays called feature maps. For
example, if the input is a color image, each feature map would
be a 2D array containing a color channel of the input image
(for an audio input each feature map would be a 1D array,
and for a video or volumetric image, it would be a 3D array).
At the output, each feature map represents a particular feature

Fig. 1. A typical ConvNet architecture with two feature stages

extracted at all locations on the input. Each stage is composed
of three layers: a filter bank layer, a non-linearity layer, and a
feature pooling layer. A typical ConvNet is composed of one,
two or three such 3-layer stages, followed by a classification
module. Each layer type is now described for the case of image
recognition.
Filter Bank Layer - F : the input is a 3D array with n1 2D
feature maps of size n2×n3. Each component is denoted xijk,
and each feature map is denoted xi. The output is also a 3D
array, y composed of m1 feature maps of size m2 × m3. A
trainable filter (kernel) kij in the filter bank has size l1 × l2
and connects input feature map xi to output feature map yj .
The module computes yj = bj +

∑
i kij ∗ xi where ∗ is

the 2D discrete convolution operator and bj is a trainable
bias parameter. Each filter detects a particular feature at every
location on the input. Hence spatially translating the input of
a feature detection layer will translate the output but leave it
otherwise unchanged.
Non-Linearity Layer: In traditional ConvNets this simply
consists in a pointwise tanh() sigmoid function applied to
each site (ijk). However, recent implementations have used
more sophisticated non-linearities. A useful one for natural im-
age recognition is the rectified sigmoid Rabs: abs(gi.tanh())
where gi is a trainable gain parameter. The rectified sigmoid is
sometimes followed by a subtractive and divisive local normal-
ization N , which enforces local competition between adjacent
features in a feature map, and between features at the same
spatial location. The subtractive normalization operation for a
given site xijk computes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q,

where wpq is a normalized truncated Gaussian weighting
window (typically of size 9x9). The divisive normalization
computes yijk = vijk/max(mean(σjk),σjk) where σjk =
(
∑

ipq wpq.v2
i,j+p,k+q)

1/2. The local contrast normalization
layer is inspired by visual neuroscience models [3], [4].
Feature Pooling Layer: This layer treats each feature map
separately. In its simplest instance, called PA, it computes
the average values over a neighborhood in each feature map.
The neighborhoods are stepped by a stride larger than 1
(but smaller than or equal the pooling neighborhood). This
results in a reduced-resolution output feature map which is
robust to small variations in the location of features in the
previous layer. The average operation is sometimes replaced
by a max PM . Traditional ConvNets use a pointwise tanh()
after the pooling layer, but more recent models do not. Some
ConvNets dispense with the separate pooling layer entirely, but
use strides larger than one in the filter bank layer to reduce
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a SUV  threshold  of  2.5  [37].  The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40], the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38].  In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40],  the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42]. This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%

segmentation1008  D.  Groheux  et  al.

Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
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Abstract— Intelligent tasks, such as visual perception, auditory
perception, and language understanding require the construction
of good internal representations of the world (or ”features”),
which must be invariant to irrelevant variations of the input
while, preserving relevant information. A major question for
Machine Learning is how to learn such good features auto-
matically. Convolutional Networks (ConvNets) are a biologically-
inspired trainable architecture that can learn invariant features.
Each stage in a ConvNets is composed of a filter bank, some
non-linearities, and feature pooling layers. With multiple stages,
a ConvNet can learn multi-level hierarchies of features. While
ConvNets have been successfully deployed in many commercial
applications from OCR to video surveillance, they require large
amounts of labeled training samples. We describe new unsu-
pervised learning algorithms, and new non-linear stages that
allow ConvNets to be trained with very few labeled samples.
Applications to visual object recognition and vision navigation
for off-road mobile robots are described.

I. LEARNING INTERNAL REPRESENTATIONS

One of the key questions of Vision Science (natural and
artificial) is how to produce good internal representations of
the visual world. What sort of internal representation would
allow an artificial vision system to detect and classify objects
into categories, independently of pose, scale, illumination,
conformation, and clutter? More interestingly, how could an
artificial vision system learn appropriate internal representa-
tions automatically, the way animals and human seem to learn
by simply looking at the world? In the time-honored approach
to computer vision (and to pattern recognition in general),
the question is avoided: internal representations are produced
by a hand-crafted feature extractor, whose output is fed to a
trainable classifier. While the issue of learning features has
been a topic of interest for many years, considerable progress
has been achieved in the last few years with the development
of so-called deep learning methods.

Good internal representations are hierarchical. In vision,
pixels are assembled into edglets, edglets into motifs, motifs
into parts, parts into objects, and objects into scenes. This
suggests that recognition architectures for vision (and for
other modalities such as audio and natural language) should
have multiple trainable stages stacked on top of each other,
one for each level in the feature hierarchy. This raises two
new questions: what to put in each stage? and how to train
such deep, multi-stage architectures? Convolutional Networks
(ConvNets) are an answer to the first question. Until recently,
the answer to the second question was to use gradient-based
supervised learning, but recent research in deep learning has
produced a number of unsupervised methods which greatly
reduce the need for labeled samples.

Convolutional Networks
Convolutional Networks [1], [2] are trainable multistage

architectures composed of multiple stages. The input and
output of each stage are sets of arrays called feature maps. For
example, if the input is a color image, each feature map would
be a 2D array containing a color channel of the input image
(for an audio input each feature map would be a 1D array,
and for a video or volumetric image, it would be a 3D array).
At the output, each feature map represents a particular feature

Fig. 1. A typical ConvNet architecture with two feature stages

extracted at all locations on the input. Each stage is composed
of three layers: a filter bank layer, a non-linearity layer, and a
feature pooling layer. A typical ConvNet is composed of one,
two or three such 3-layer stages, followed by a classification
module. Each layer type is now described for the case of image
recognition.
Filter Bank Layer - F : the input is a 3D array with n1 2D
feature maps of size n2×n3. Each component is denoted xijk,
and each feature map is denoted xi. The output is also a 3D
array, y composed of m1 feature maps of size m2 × m3. A
trainable filter (kernel) kij in the filter bank has size l1 × l2
and connects input feature map xi to output feature map yj .
The module computes yj = bj +

∑
i kij ∗ xi where ∗ is

the 2D discrete convolution operator and bj is a trainable
bias parameter. Each filter detects a particular feature at every
location on the input. Hence spatially translating the input of
a feature detection layer will translate the output but leave it
otherwise unchanged.
Non-Linearity Layer: In traditional ConvNets this simply
consists in a pointwise tanh() sigmoid function applied to
each site (ijk). However, recent implementations have used
more sophisticated non-linearities. A useful one for natural im-
age recognition is the rectified sigmoid Rabs: abs(gi.tanh())
where gi is a trainable gain parameter. The rectified sigmoid is
sometimes followed by a subtractive and divisive local normal-
ization N , which enforces local competition between adjacent
features in a feature map, and between features at the same
spatial location. The subtractive normalization operation for a
given site xijk computes: vijk = xijk −

∑
ipq wpq.xi,j+p,k+q,

where wpq is a normalized truncated Gaussian weighting
window (typically of size 9x9). The divisive normalization
computes yijk = vijk/max(mean(σjk),σjk) where σjk =
(
∑

ipq wpq.v2
i,j+p,k+q)

1/2. The local contrast normalization
layer is inspired by visual neuroscience models [3], [4].
Feature Pooling Layer: This layer treats each feature map
separately. In its simplest instance, called PA, it computes
the average values over a neighborhood in each feature map.
The neighborhoods are stepped by a stride larger than 1
(but smaller than or equal the pooling neighborhood). This
results in a reduced-resolution output feature map which is
robust to small variations in the location of features in the
previous layer. The average operation is sometimes replaced
by a max PM . Traditional ConvNets use a pointwise tanh()
after the pooling layer, but more recent models do not. Some
ConvNets dispense with the separate pooling layer entirely, but
use strides larger than one in the filter bank layer to reduce
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a feature detection layer will translate the output but leave it
otherwise unchanged.
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separately. In its simplest instance, called PA, it computes
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results in a reduced-resolution output feature map which is
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38].  In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40], the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
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evaluated  based  on  a  SUV  threshold  of  2.5  [37].  The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38].  In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40], the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8)  and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40],  the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40],  the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8)  and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%

segmentation
f (y)

y



IMAGE-BASED AI FOR PRECISION MEDICINE

• Segmentation and outcome prediction 
Kumar et al. (2012) Radiomics: the process and the challenges. Magn Res Imag, 30(9) 
• Quantitative approach to explore and reveal tissue structures related 

to relevant clinical endpoints …. in a non-invasive fashion !

15

• Quantitative feature extraction 

• Intensity, shape, texture 

• Statistical and predictive models 

• Uni- and multi- variate

1008  D.  Groheux  et  al.

Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40],  the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40],  the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8)  and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40],  the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40],  the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8)  and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40],  the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42]. This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44]. Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40], the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42]. This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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���������������������
������������������������Ǥ This study comprised 35 non-small cell lung cancer (NSCLC) patients 
who were prospectively included in a clinical trial (NCT00522639) and scheduled for radiotherapy and/
or chemotherapy between July and December 200811. 18F-FDG-PET/CT imaging was performed on a 
Biograph 40 PET/CT scanner (Siemens Medical Solutions) twice: (1) after induction chemotherapy but 
before radiotherapy and (2) during the second week of radiotherapy (Fig. 2a,b). Patients fasted for at 
least six hours before imaging. The injected amount of 18F-FDG was (4 ×  body weight [kg] + 20) MBq. 
Patients rested 60 minutes before image acquisition. Patients’ blood glucose levels were below 10 mmol/L, 
so no correction for blood glucose level was applied.

PET images were iteratively reconstructed using normalization- and attenuation-weighted OSEM 
using 4 iterations, 8 subsets and a 5 mm Gaussian filter. The resulting images had an in-plane pixel size 
of 4 ×  4 mm and a 3 mm slice thickness. PET images were converted into units SUV, normalized by 
patient body weight9. Tumor volumes of interest (VOIs) were manually delineated on fused PET/CT 
images for treatment planning purposes. Further details are described elsewhere11. This study was con-
ducted according to national laws and guidelines and approved by the appropriate local trial committee 
at Maastricht University Medical Center (MUMC+ ), Maastricht, The Netherlands. All included patients 
signed an informed consent form.

���������������������������������������Ǥ� SUVs within the VOI were first discretized using: (1) a 
fixed bin size (B), or intensity resolution, in units of SUV (Fig. 2c) and (2) a fixed number of bins (D), 
or discrete resampling values (Fig. 2d). For image I, let I(x) represent the SUV of voxel x, SUVmin the 
minimum SUV in I and SUVmax the maximum SUV in I. Resampling SUVs into bins with an intensity 
resolution of B was performed using:
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Figure 2. Left column: Representative images of sequential imaging for one patient, showing pre-treatment 
imaging (a) and imaging during the second week of radiotherapy (b). The tumor delineation is outlined 
in green. Both images are displayed with the same window/level settings. Right column: Histograms of the 
pre-treatment and during treatment images, resampled with a fixed bin size (i.e. intensity resolution) (c) or 
a predefined number of bins (d). In (d), one can appreciate the difference in resulting intensity resolution 
when resampling with a fixed number of bins. Pre-treatment and during treatment intensity resolutions were 
0.6 and 0.37 [SUV], respectively

• Radiomics [Kumar2012]: image-based personalized tumor phenotyping 

• Surrogate / complement slow, costly and invasive molecular analysis 

• Use computerized 3D image analysis to predict disease outcome 

BACKGROUND – RADIOMICS
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Quantitative features: 
intensity, shape, texture

Predictive modeling: 
statistical, machine learning

 
Deep  

learning

Principal investigators: 
• Prof. John O. Prior 
• Prof. Niklaus Schaefer 
• Prof. Clarisse Dromain 
• Prof. Adrien Depeursinge 
• Dr. Jonas Richiardi 
• Dr. Mario Jreige 
• Dr. Michel Cuendet 
• Dr. Naïk Vietti-Violi 
• Dr. Vincent Dunet 
• Dr. Vincent Andrearczyk 
• Dr. Daniel Abler 
• Dr. Luis Schiappacasse 
• Dr. Meritxell Bach Cuadra 
• ~ 25 people, since 2018 

Objectives: 
• Investigate and validate links between quantitative imaging  

(deep/handcrafted) and clinical endpoints  
• Optimize cost-effectiveness and value of clinical imaging 
• Research infrastructure development (DICOM management,  

segmentation, image analysis, model building and validation) 

Studies: 
• Onco: Head & Neck, Brain 

Melanoma, Lung, Liver, … 
• Other: Myocardial Perf.,  

Mult. Sclerosis, Pancreatitis, …



AGENDA

• Personalized medicine 

• Artificial Intelligence (AI) for medical image analysis 
• Deep learning and Radiomics  

• Fundamentals 

• Addressed tasks 

• Clinical certification status 

• Selected contributions from the CHUV/HES-SO ecosystem 
• The QuantImage v2 platform 

• The HECKTOR challenge 

• Explainable models for multiple sclerosis: 
MSxplain 

•Conclusions
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DEEP LEARNING

Deep learning• Quantitative feature extraction 

• Intensity, shape, margin, texture 

• Statistical and predictive models 

• Uni- and multi- variate
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40],  the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42]. This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44]. Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40], the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42]. This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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• QuantImage v2: A one-stop tool for clinical radiomics research1 
Abler D et al. (2023) QuantImage v2: a comprehensive and integrated physician-centered cloud platform for radiomics and 
machine learning research. Eur. Rad. Exp., 16(7). 
• Code-free access to state-of-the-art radiomics  

methods and machine learning 

• An integrated and collaborative cloud environment 

• Advanced cohort manager with Kheops online2 

• Feature extractor covering all feature families 

• A clinician-in-the-loop feature explorer to enable 

• Advanced data understanding (group homogeneity,  
outlier identification, feature meaning) 

• Development and validation  
of machine learning models 

• Model interpretability via  
feature exploration

QUANTIMAGE V2

and GBM are shown in Fig. 3. Details, including the number
of times each feature was selected and the mean variable im-
portance of the selected features during cross-validation, are
summarized in Supplemental Table 1.

The AUCs of the three radiologists were 0.707 (95 % CI
0.622–0.793), 0.759 (95 % CI 0.656–0.861), and 0.695 (95 %
CI 0.590–0.800) for readers 1, 2 and 3, respectively. The tenth
percentile of ADC was significantly lower in PCNSL than in
GBM (686.3 × 10-3 mm2/s vs. 785.2×10-3 mm2/s; p = 0.006
[Student’s t-test]), and the AUC of the tenth percentile of ADC
for differentiating between PCNSL and GBMwas 0.684 (95%
CI0.560–0.809). In comparing diagnostic performances, the
AUC of the radiomics classifier was significantly higher than
those of the three radiologists and ADC (p< 0.001 for all)
(Fig. 4). Representative cases in which diagnoses were corrected
using the radiomics approach are shown in Figs. 5 and 6.

Discussion

In this study, we assessed the diagnostic value of radiomics in
differentiating between non-necrotic enhancing GBM and
PCNSL. Atypical GBM without necrosis may not be

distinguishable from PCNSL based on gross visual inspection
of conventional MR images [6–8]. We used large-scale
radiomics to extract information from conventional MR im-
ages to detect differences that were not perceptible by visual
inspection. We found that a radiomics-based machine-learn-
ing classifier yielded excellent performance for differentiating
between PCNSL and atypical GBM, yielding higher diagnos-
tic values than visual analysis, radiologists or use of the ADC.
Given that conventional sequences are routinely used, our
results indicate that radiomics is useful for augmenting the
diagnostic performance of radiologists’ visual analyses for
differentiating between PCNSL and atypical GBM, and can
be widely performed without requiring additional scans.

Previous studies have used various techniques to discrimi-
nate between PCNSL and GBM. Several studies have reported
that PCNSL has significantly lower ADC and relative cerebral
blood volume (rCBV) values in perfusion-weighted images,
and higher Ktrans values from dynamic contrast-enhanced MR
images than GBM [10, 12, 14, 21, 22]. These results can be
explained by differences in the underlying pathophysiology
between the two disease entities. Histologically, PCNSLs have
poorer and more permeable neovascularisation, and a higher
degree of cellularity than GBMs [5, 6, 11, 21, 23, 24]. These
microscopic differences are also related to different findings in
conventionalMRI, such as necrosis in GBM and homogeneous
enhancement without necrosis in PCNSL. Therefore, even if
conventional MRI findings do not differ significantly by visual
inspection, conventional MRI may still reflect underlying,

Fig. 4 Receiver operating characteristic curve analysis of radiomics
random forest (RF) classifiers, three readers and apparent diffusion
coefficient (ADC) for the differentiation between primary central nervous
system lymphoma and atypical glioblastoma. The mean area under the
curve (AUC) for the radiomics RF classifier (0.921) was significantly
higher than those for the three readers and ADC (AUC: 0.707, 0.759,
0.695 and 0.684 for readers 1, 2, 3 andADC, respectively) (p< 0.001 for all)

Fig. 3 Heat map of the selected features of radiomics classifiers for
differentiating between primary central nervous system lymphoma
(PCNSL) and atypical glioblastoma (GBM)
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• Management of feature collections for a given album 

• Patient outcomes/labels upload 

• Creation of specific feature sub-collections 

• Feature visualization and relation to outcomes 
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• QuantImage v2: A one-stop tool for clinical radiomics research1 
Abler D et al. (2023) QuantImage v2: a comprehensive and integrated physician-centered cloud platform for radiomics and 
machine learning research. Eur. Rad. Exp., 16(7). 
• As an educational tool for medical students and professionals 

• Hands-on experience with the development of AI models 
for image-based personalized medicine
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Excerpt 1:  “A lot of red”Challenges in radiomics
Limited interpretability of the resulting radiomic models, 
leading to physicians’ low confidence in the diagnosis and 
treatment planning proposed by the model (Liu et al. 2019). 

We know little about physicians’ and researchers’ actual 
conduct while assessing and interpreting radiomic models. 

Antoniadi et al. (2021) 

conclude that there is 
currently a lack of user 
studies “exploring the 
needs of clinicians”.

→ Our study
(see Mlynář et al. 2023)

Explainability, agency, and accountability
Our study shows just how, in concrete interactional detail, 
novice users’ troubles might be based in the current task, 
in the platform, and in the broader domain of radiomics. 

The crux is in how knowledge of radiomics and knowledge of the 
platform reflexively establish each other in situ, 
e.g., in substantive and executive clarifications.

These “explanations” are related to different 
layers of AI’s locally constituted agency, and 
to its accountability within various steps in 
the radiomic working procedure.

Agency is routinely ascribed to the “machine”, which features 
as a passive object rather than an active agent. Explanations 
are also done on behalf of the platform by the participants.

Młynar J et al. (2024) Making sense of radiomics: Insights on 
human-AI collaboration in medical interaction from an 
observational user study. Frontiers in Communication, In press.

The setting: Trial sessions

Pairs of novice users (physicians and technicians) were working 
together with an expert on a task to identify features in the data in 

order to build a well-performing model with the help of machine 
learning algorithms incorporated in the QuantImage platform.

https://medgift.github.io/quantimage-v2-info/
https://kheops.online/
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DEEP LEARNING

Deep learning• Quantitative feature extraction 

• Intensity, shape, margin, texture 

• Statistical and predictive models 

• Uni- and multi- variate
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40],  the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42]. This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44]. Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.
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investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
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based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40], the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
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lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42]. This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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• HECKTOR1 2020-2022: HEad and neCK TumOR segmentation 
and outcome prediction in PET/CT images 
Oreiller V et al. (2022) Head and neck tumor segmentation in PET/CT: The HECKTOR challenge. Medical Image Analysis, 77(1).

John O. PriorMario JreigeMathieu HattValentin OreillerVincent Andrearczyk
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• HECKTOR1 2020-2022: HEad and neCK TumOR segmentation 
and outcome prediction in PET/CT images 
Oreiller V et al. (2022) Head and neck tumor segmentation in PET/CT: The HECKTOR challenge. Medical Image Analysis, 77(1). 

• H&N cancer 5th leading cancer by incidence (Parkin et al. 2005) 
• High local failure: 40% in first 2 years after treatment (Chajon et al. 2013) 

• Precision oncology: finding optimal  
treatment for each patient, crucial for  
patient outcome AND well-being 

• FDG-PET/CT standard for staging and  
treatment planning 

• AI can help predict the best treatment  
based on PET/CT images and clinical data  
(Vallières et al. 2017, Bogowicz et al. 2017) 
• Correlate visual (lesion size, location and texture) and clinical (age, HPV status, smoking) 

features with response to treatment 
• Performance is promising but not (yet?) clinically satisfactory

6 Given-name Surname et al. /Medical Image Analysis (2023)

(a) CHUM (b) CHUS (c) HGJ

(d) HMR (e) CHUV (f) CHUP

Fig. 1: Case examples of 2D sagittal slices of fused PET/CT images from each of the six centers. The CT (grayscale) window in Hounsfield units is [�140, 260].
The PET window in SUV is [0, 12], represented in a “hot” colormap.

Definition 3.1 (GTVp primary tumor delineation guidelines).

Oropharyngeal lesions are contoured on PET/CT using information from PET and unenhanced CT acquisitions. The contouring

includes the entire edges of the morphologic anomaly as depicted on unenhanced CT (mainly visualized as a mass e↵ect) and

the corresponding hypermetabolic volume, using PET acquisition, unenhanced CT and PET/CT fusion visualizations based on

automatic co-registration. The contouring excludes the hypermetabolic activity projecting outside the physical limits of the lesion

(for example in the lumen of the airway or on the bony structures with no morphologic evidence of local invasion). For more specific

situations, the clinical nodal category was verified to ensure the exclusion of nearby FDG-avid and/or enlarged lymph nodes (e.g.

submandibular, high level II, and retropharyngeal). In the case of tonsillar fossa or base of tongue fullness/enlargement without

corresponding FDG avidity, the clinical datasheet was reviewed to exclude patients with pre-radiation tonsillectomy or extensive

biopsy.

The contours for the CHUV center were drawn by an expert radiation oncologist for radiomics purposes (Castelli et al., 2019).

The expert contoured the tumors on fused PET/CT scans. The cases from HGJ, CHUS, HMR, and CHUM centers were originally

contoured in the context of radiotherapy (Vallières et al., 2017). All contours were re-delineated for radiomics purposes according to

the aforementioned guidelines for HECKTOR 2020 (Oreiller et al., 2022). For the data added to the current HECKTOR 2021 edition

(CHUP), the delineations were obtained semi-automatically with a Fuzzy Locally Adaptive Bayesian (FLAB) segmentation (Hatt

et al., 2009) applied to the PET image, and subsequently corrected by an expert radiation oncologist based on the corresponding

CT information for radiotherapy planning. The re-delineation of true tumoral volume was performed by three experts: one nuclear

medicine physician, one radiation oncologist and one who is both radiologist and nuclear medicine physician. The 71 cases were

divided between the three experts and each delineation was then cross-checked by all three of them. This re-delineation was

performed in a centralized fashion with the MIM software, and the verification of the contours was made possible by the MIM

Parkin DM, et al. (2005) Global cancer statistics, 2002. CA 55(2). 
Chajon E, et al. (2013) Salivary gland-sparing other than parotid-sparing in definitive head-and-neck intensity-modulated radiotherapy  
does not seem to jeopardize local control. Rad. Onc. 8(1). 
Vallières M, et al. (2017) Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Nat. Sci. Rep. 7(1). 
Bogowicz M, et al. (2017) Comparison of PET and CT radiomics for prediction of local tumor control in head and neck squamous cell  
carcinoma. Acta Oncologica 56(11). 
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• HECKTOR1 2020-2022: HEad and neCK TumOR segmentation 
and outcome prediction in PET/CT images 
Oreiller V et al. (2022) Head and neck tumor segmentation in PET/CT: The HECKTOR challenge. Medical Image Analysis, 77(1). 

• H&N cancer 5th leading cancer by incidence (Parkin et al. 2005) 
• High local failure: 40% in first 2 years after treatment (Chajon et al. 2013) 

• Precision oncology: finding best  
treatment for each patient, crucial for  
patient outcome AND well-being 

• FDG-PET/CT standard for staging and  
treatment planning 

• AI can help predict the best treatment  
based on PET/CT images and clinical data  
(Vallières et al. 2017, Bogowicz et al. 2017) 
• Correlate visual (lesion size, location and texture) and clinical (age, HPV status, smoking) 

features with response to treatment 
• Performance is promising but not (yet?) clinically satisfactory

6 Given-name Surname et al. /Medical Image Analysis (2023)

(a) CHUM (b) CHUS (c) HGJ

(d) HMR (e) CHUV (f) CHUP

Fig. 1: Case examples of 2D sagittal slices of fused PET/CT images from each of the six centers. The CT (grayscale) window in Hounsfield units is [�140, 260].
The PET window in SUV is [0, 12], represented in a “hot” colormap.

Definition 3.1 (GTVp primary tumor delineation guidelines).

Oropharyngeal lesions are contoured on PET/CT using information from PET and unenhanced CT acquisitions. The contouring

includes the entire edges of the morphologic anomaly as depicted on unenhanced CT (mainly visualized as a mass e↵ect) and

the corresponding hypermetabolic volume, using PET acquisition, unenhanced CT and PET/CT fusion visualizations based on

automatic co-registration. The contouring excludes the hypermetabolic activity projecting outside the physical limits of the lesion

(for example in the lumen of the airway or on the bony structures with no morphologic evidence of local invasion). For more specific

situations, the clinical nodal category was verified to ensure the exclusion of nearby FDG-avid and/or enlarged lymph nodes (e.g.

submandibular, high level II, and retropharyngeal). In the case of tonsillar fossa or base of tongue fullness/enlargement without

corresponding FDG avidity, the clinical datasheet was reviewed to exclude patients with pre-radiation tonsillectomy or extensive

biopsy.

The contours for the CHUV center were drawn by an expert radiation oncologist for radiomics purposes (Castelli et al., 2019).

The expert contoured the tumors on fused PET/CT scans. The cases from HGJ, CHUS, HMR, and CHUM centers were originally

contoured in the context of radiotherapy (Vallières et al., 2017). All contours were re-delineated for radiomics purposes according to

the aforementioned guidelines for HECKTOR 2020 (Oreiller et al., 2022). For the data added to the current HECKTOR 2021 edition

(CHUP), the delineations were obtained semi-automatically with a Fuzzy Locally Adaptive Bayesian (FLAB) segmentation (Hatt

et al., 2009) applied to the PET image, and subsequently corrected by an expert radiation oncologist based on the corresponding

CT information for radiotherapy planning. The re-delineation of true tumoral volume was performed by three experts: one nuclear

medicine physician, one radiation oncologist and one who is both radiologist and nuclear medicine physician. The 71 cases were

divided between the three experts and each delineation was then cross-checked by all three of them. This re-delineation was

performed in a centralized fashion with the MIM software, and the verification of the contours was made possible by the MIM

Parkin DM, et al. (2005) Global cancer statistics, 2002. CA 55(2). 
Chajon E, et al. (2013) Salivary gland-sparing other than parotid-sparing in definitive head-and-neck intensity-modulated radiotherapy  
does not seem to jeopardize local control. Rad. Onc. 8(1). 
Vallières M, et al. (2017) Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Nat. Sci. Rep. 7(1). 
Bogowicz M, et al. (2017) Comparison of PET and CT radiomics for prediction of local tumor control in head and neck squamous cell  
carcinoma. Acta Oncologica 56(11). 
 

1https://hecktor.grand-challenge.org/, Feb 2024

Let’s organize a challenge 
to solicit worldwide experts 
on medical image analysis !

https://hecktor.grand-challenge.org/
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• HECKTOR 2020-2022 challenges comparison 

• Strong bibliometric impact 
• 3 proceeding volumes  
• ~11 papers from us with 

~400 citations as of Feb 2024
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• HECKTOR 2020-2022: lessons learned 
• Segmentation of the primary tumor GTVp and lymph nodes GTVn

14 V. Andrearczyk et al.

(a) MDA-203

(b) CHB-001

(c) USZ-010

Fig. 2: Examples of results of the winning team (NVAUTO [32]). The automatic
segmentation results (light) and ground truth annotations (dark) are displayed
on an overlay of 2D slices of CT (left) images and PET (right). GTVn is in red
and GTVp in blue. CT are clipped between [-140,260] HU and PET images are
between [0,5] SUV.

Table: Leaderboard segmentation 2022

• On par with expert performance 
• Simple methods work well  

• 3D U-Net always in top three
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• HECKTOR 2020-2022: lessons learned 
• Outcome prediction: Recurrence Free Survival (RFS) 

Overview of the HECKTOR 2022 Challenge 19

position (center of mass) of each connected component was also concatenated in
the vector of radiomics features. Only clinical variables without missing informa-
tion were used. Prediction of RFS was achieved by training a multiple-instance
neural network in order to handle multiple lesions per patient. Amongst various
training strategies (5-fold CV or the entire training set), the best was using the
entire training set, reaching a C-index of 0.619 on the test set.

In [36], Salmanpour et al. extracted deep features from the bottleneck of an
auto-encoder fed with PET and CT images fused via a weighted technique. These
features were selected with mutual information and fed to a random survival
forest trained through a 5-fold CV and grid search, obtaining a C-index of 0.59
on the test set.

Results The results are reported in Table 4.

Team C-index rank
LITO [34] 0.68152 1
BDAV USYD [29] 0.68084 2
AIRT [46] 0.67257 3
RT UMCG [26] 0.66834 4
RokieLab [49] 0.65817 5
MLC [43] 0.65598 6
VokCow [30] 0.64081 7
junma [25] 0.63896 8
LMU [47] 0.63536 9
TheDLab [35] 0.6305 10
SMIAL [9] 0.61877 11
TECVICO Corp [36] 0.59042 12

Average 0.64769

Table 4: Results of Task 2. The best out of three possible submissions is
reported for each eligible team. Full list of results available at https://
hecktor.grand-challenge.org/evaluation/challenge/leaderboard/. The
predictions of the MLC team were concordant with the time (prediction of days),
instead of a risk score. Their C-index results on the leaderboard were, therefore,
< 0.5 and they were ranked last on this task. Other teams made this mistake for
their first submission, not reported here because we keep only the best results.

The participants’ results range from a C-index of 0.59042 to 0.68152, obtained
by Rebaud et al. [34].

5 Discussion: Putting the Results into Context

5.1 Outcomes and Findings

Task 1: Automatic segmentation of GTVp and GTVn

• RFS prediction not (yet?) ready for clinical use 
• More data needed to better represent (and focus)  

on subpopulations,  e.g. HPV positive only, specific 
image acquisition protocols, … 

• While 4/5 deep learning in top five, 
the winning team used a very  
simple radiomics approach 

Table: Leaderboard  
RFS prediction 2022
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• HECKTOR 2020-2022: lessons learned 
• Outcome prediction: Recurrence Free Survival (RFS) 

• Segmentation and outcome prediction tasks are synergistic  
• Learning to segment helps improving outcome prediction (Andrearczyk et al. 2021) 

Overview of the HECKTOR 2022 Challenge 19

position (center of mass) of each connected component was also concatenated in
the vector of radiomics features. Only clinical variables without missing informa-
tion were used. Prediction of RFS was achieved by training a multiple-instance
neural network in order to handle multiple lesions per patient. Amongst various
training strategies (5-fold CV or the entire training set), the best was using the
entire training set, reaching a C-index of 0.619 on the test set.

In [36], Salmanpour et al. extracted deep features from the bottleneck of an
auto-encoder fed with PET and CT images fused via a weighted technique. These
features were selected with mutual information and fed to a random survival
forest trained through a 5-fold CV and grid search, obtaining a C-index of 0.59
on the test set.

Results The results are reported in Table 4.

Team C-index rank
LITO [34] 0.68152 1
BDAV USYD [29] 0.68084 2
AIRT [46] 0.67257 3
RT UMCG [26] 0.66834 4
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LMU [47] 0.63536 9
TheDLab [35] 0.6305 10
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Average 0.64769

Table 4: Results of Task 2. The best out of three possible submissions is
reported for each eligible team. Full list of results available at https://
hecktor.grand-challenge.org/evaluation/challenge/leaderboard/. The
predictions of the MLC team were concordant with the time (prediction of days),
instead of a risk score. Their C-index results on the leaderboard were, therefore,
< 0.5 and they were ranked last on this task. Other teams made this mistake for
their first submission, not reported here because we keep only the best results.

The participants’ results range from a C-index of 0.59042 to 0.68152, obtained
by Rebaud et al. [34].

5 Discussion: Putting the Results into Context

5.1 Outcomes and Findings

Task 1: Automatic segmentation of GTVp and GTVn

• RFS prediction not (yet?) ready for clinical use 
• More data needed to better represent (and focus)  

on subpopulations,  e.g. HPV positive only, specific 
image acquisition protocols, … 

• While 4/5 deep learning in top five, 
the winning team used a very  
simple radiomics approach 

Andrearczyk V et al. (2021) Multi-Task Deep 
Segmentation and Radiomics for Automatic 
Prognosis in Head and Neck Cancer. PRIME.

4 V. Andrearczyk et al.

Fig. 1. 3D multi-modal (PET/CT) and multi-task architecture with a common down-
sampling branch (green), an up-sampling segmentation branch (blue) and a radiomics
branch (red). Residual convolutional layers are used in the down-sampling part.

architecture is presented in Fig. 1, including down-sampling (green) and up-
sampling (blue) parts. The probabilities of the softmax activated outputs are
thresholded at 0.5 to obtain a binary mask. More details on the implementation
can be found in [22]. The model is trained with a Dice loss, computed as

LDice = �2

P
k ŷkykP

k ŷk +
P

k yk
, (1)

where ŷk 2 [0, 1] is the softmax output for a voxel k, yk 2 {0, 1} is the value of
this voxel in the 3D ground truth mask and the sum is computed over all voxels.

2.2 Multi-task Segmentation and Radiomics

The multi-task architecture is composed of the normal 3D segmentation with an
additional radiomics branch (red in Fig. 1) at the bottleneck of the network. This
radiomics branch is connected to multiple layers of the downsampling path using
skip connections to gather information at multiple scales and complexity. It is
composed of a global average pooling layer to aggregate the spatial information,
a densely connected layer (ReLU activated) with 128 neurons and a prediction
layer with a single neuron. Dropout with 0.5 probability is added before the
dense layers for regularization. For the segmentation task, we use the Dice loss
defined in Eq. (1). For the radiomics task, we use a Cox loss [7] computed as

LCox = �
1

NE=1

X

i:Ei=1

0

@ĥ(xi)� log
X

j2H(Ti)

eĥ(xj)

1

A , (2)

Table: Leaderboard  
RFS prediction 2022
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• HECKTOR 2020-2022: lessons learned 
• Segmentation and outcome prediction tasks are synergistic  

• Learning to segment helps improving outcome prediction (Andrearczyk et al. 2021) 

• Saliency maps (Grad-CAM) show that the multi-task network focuses more on areas 
relevant to outcome prediction: the primary tumor and lymph nodes

Andrearczyk V et al. (2021) Multi-Task Deep 
Segmentation and Radiomics for Automatic 
Prognosis in Head and Neck Cancer. PRIME.

4 V. Andrearczyk et al.

Fig. 1. 3D multi-modal (PET/CT) and multi-task architecture with a common down-
sampling branch (green), an up-sampling segmentation branch (blue) and a radiomics
branch (red). Residual convolutional layers are used in the down-sampling part.
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sampling (blue) parts. The probabilities of the softmax activated outputs are
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where ŷk 2 [0, 1] is the softmax output for a voxel k, yk 2 {0, 1} is the value of
this voxel in the 3D ground truth mask and the sum is computed over all voxels.

2.2 Multi-task Segmentation and Radiomics

The multi-task architecture is composed of the normal 3D segmentation with an
additional radiomics branch (red in Fig. 1) at the bottleneck of the network. This
radiomics branch is connected to multiple layers of the downsampling path using
skip connections to gather information at multiple scales and complexity. It is
composed of a global average pooling layer to aggregate the spatial information,
a densely connected layer (ReLU activated) with 128 neurons and a prediction
layer with a single neuron. Dropout with 0.5 probability is added before the
dense layers for regularization. For the segmentation task, we use the Dice loss
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• Personalized medicine 

• Artificial Intelligence (AI) for medical image analysis 
• Deep learning and Radiomics  

• Fundamentals 
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• Clinical certification status 

• Selected contributions from the CHUV/HES-SO ecosystem 
• The QuantImage v2 platform 
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• Explainable models for multiple sclerosis: 
MSxplain 
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DEEP LEARNING

Deep learning• Quantitative feature extraction 

• Intensity, shape, margin, texture 

• Statistical and predictive models 

• Uni- and multi- variate

1008  D.  Groheux  et  al.

Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40],  the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42]. This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44]. Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.
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of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40], the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42]. This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
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EXPLAINABLE AI

• XAI: Opening the black box to reveal the internal mechanisms  
of complex deep models 
• Importance of XAI for safe clinical use 

(Lekadir et al. 2023) 
• For engineers (development) 
• For domain experts (development) 
• For end-users (production) 

• XAI still in its infancy 
(de Vries et al. 2023) 

• The MSxplain project1 

• Explainability 
• Interpretability 
• Uncertainty 
• Clinical integration

34

V. AndrearczykF. Spagnolo M. Bach Cuadra H. Müller C. Granziera N. MolchanovaB. Spahr D. Ribes

https://blog.ml.cmu.edu/2019/05/17/
explaining-a-black-box-using-deep-variational-
information-bottleneck-approach/,  Feb 2024

Lekadir K et al.(2023). FUTURE-AI: International consensus guideline for trustworthy and deployable 
artificial intelligence in healthcare. 1. https://arxiv.org/abs/2309.12325v1 
de Vries BM et al. (2023). Explainable artificial intelligence (XAI) in radiology and nuclear medicine: 
a literature review. Frontiers in Medicine, 10, 1180773. 
 

1https://wp.unil.ch/mial/research/projects/msxplain/, Feb 2024

https://blog.ml.cmu.edu/2019/05/17/explaining-a-black-box-using-deep-variational-information-bottleneck-approach/
https://blog.ml.cmu.edu/2019/05/17/explaining-a-black-box-using-deep-variational-information-bottleneck-approach/
https://blog.ml.cmu.edu/2019/05/17/explaining-a-black-box-using-deep-variational-information-bottleneck-approach/
https://arxiv.org/abs/2309.12325v1
https://wp.unil.ch/mial/research/projects/msxplain/


EXPLAINABLE AI

• XAI: Opening the black box to reveal the internal mechanisms  
of complex deep models 
• Importance of XAI for safe clinical use 

(Lekadir et al. 2023) 
• For engineers (development) 
• For domain experts (development) 
• For end-users (production) 

• XAI still in its infancy 
(de Vries et al. 2023) 

• The MSxplain project1 

• Explainability 
• Interpretability 
• Uncertainty 
• Clinical integration

35

V. AndrearczykF. Spagnolo M. Bach Cuadra H. Müller C. Granziera N. MolchanovaB. Spahr D. Ribes

Lekadir K et al.(2023). FUTURE-AI: International consensus guideline for trustworthy and deployable 
artificial intelligence in healthcare. 1. https://arxiv.org/abs/2309.12325v1 
de Vries BM et al. (2023). Explainable artificial intelligence (XAI) in radiology and nuclear medicine: 
a literature review. Frontiers in Medicine, 10, 1180773. 
 

1https://wp.unil.ch/mial/research/projects/msxplain/, Feb 2024

https://blog.ml.cmu.edu/2019/05/17/
explaining-a-black-box-using-deep-variational-
information-bottleneck-approach/,  Feb 2024

https://arxiv.org/abs/2309.12325v1
https://wp.unil.ch/mial/research/projects/msxplain/
https://blog.ml.cmu.edu/2019/05/17/explaining-a-black-box-using-deep-variational-information-bottleneck-approach/
https://blog.ml.cmu.edu/2019/05/17/explaining-a-black-box-using-deep-variational-information-bottleneck-approach/
https://blog.ml.cmu.edu/2019/05/17/explaining-a-black-box-using-deep-variational-information-bottleneck-approach/


EXPLAINABLE AI (XAI)

• XAI: Opening the black box to reveal the internal mechanisms  
of complex deep models 

• Multiple Sclerosis (MS): automatic segmentation of White Matter 
Lesions (WML) as biomarkers of diagnosis and progression 
• Data: 687 patients with multiple timepoints, MRI (FLAIR and MPRAGE) 
• 3D U-Net with normalized dice and blob loss 

• Normalized Dice of 0.71 on the test set (~350 lesions)
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3D U-Net

la Rosa F et al. (2020). Multiple sclerosis cortical and 
WM lesion segmentation at 3T MRI: a deep learning 
method based on FLAIR and MP2RAGE. 
NeuroImage: Clinical, 27, 102335.



EXPLAINABLE AI (XAI)

• XAI: Opening the black box to reveal the internal mechanisms  
of complex deep models 

• Multiple Sclerosis (MS): automatic segmentation of White Matter 
Lesions (WML) as biomarkers of diagnosis and progression 

• XAI: understanding the model 
• What triggers a WML detection ? 

• What information does the model use for a specific WML instance  ? 
Spagnolo F. et al. (2024). Instance-level explanations in multiple sclerosis lesion segmentation, in preparation
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Figure 2.2. Overview of Grad-CAM++, generating a class-level explanation
heatmap similarly to Vinogradova et al. (2020).

2.4.1. Instance-level saliency (Grad-CAM++)

The method generated a class-level explanation for semantic segmentation
by merging contributions to different lesion instances. The impact of input
regions on different parts of the output was combined by: 1) considering the
gradients of a subset y0 of logits y[v]; 2) assigning a single weight !k for each
feature map Ak. However, it would be useful to know which input voxels
influenced the segmentation of a given instance (e.g. a lesion).

To adapt the algorithm to an instance-level explanation we considered
two steps. First, the gradients of y were computed from the domain ⌦ of
one lesion, as in Eq.(9). Then, the summation in Eq.(6) over � to compute
weights was removed to obtain a weight for each element of a feature map.
This was needed to prevent the activation of other instances to emerge, and
to select only the activation in ⌦. Eq.(8) and Eq.(10) represent the proposed
heatmap MGradCAM

l provided by the modified Grad-CAM++ method, and
the weights !k[v]:

MGradCAM
⌦ [v] = Relu

 
X

k

!k[v] · Ak[v]

!
, (8)

y0 =
X

v2⌦

y[v], (9)
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!k[v] = ↵k[v] ·Relu

✓
@y0

@Ak[v]

◆
, (10)

where ↵k[v] were obtained as in Eq. (7). An overview of the proposed adap-
tation of Grad-CAM++ to segmentation is illustrated in Fig. 2.3.

Figure 2.3. Overview of the proposed adaptation of Grad-CAM++, generating
an instance-level explanation heatmap.

2.5. Experiments and sanity checks

The described methodologies were applied to a batch of 10 test patients,
obtaining saliency maps for a total of 342 lesions. The information exploited
by the U-Net during inference for the segmentation of specific WM lesions
was assessed with several experiments. First, the distribution of positive and
negative values in saliency maps was observed to draw conclusions on pos-
sible spatial recurring patterns. An analysis of these distributions allowed
a statistical comparison between gradient values computed with respect to
FLAIR and MPRAGE. As a consequence, it was possible to isolate the con-
tribution of both input sequences to the prediction of single lesions. The
different cases of TP, FP and FN lesions were examined and compared to
emphasize similarities and differences in the distribution of saliency maps’
values. 342 TP, 1013 FP, and 381 FN lesions were identified using the same
MRI scans.
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sible spatial recurring patterns. An analysis of these distributions allowed
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EXPLAINABLE AI (XAI)

• XAI: Opening the black box to reveal the internal mechanisms  
of complex deep models 

• Multiple Sclerosis (MS): automatic segmentation of White Matter 
Lesions (WML) as biomarkers of diagnosis and progression 

• XAI: understanding the model 
• What triggers a WML detection ?

6 experiments - perilesional volume
● Extent of contextual information 

for a robust prediction?

1.   Start from a lesion inside a black 
background
2.   Dilation steps on the mask to 
slowly include more perilesional 
volume
3.   Repeat for 10 lesions of average 
size (~15mm3)
4.   Report average prediction score on !, and number of predictions per 
dilation step

FLAIR masked out with dilation steps 1, 5 and 24 (top), and the corresponding output probability maps (bottom).

27

6 experiments - perilesional volume
● Extent of contextual information 

for a robust prediction?

1.   Start from a lesion inside a black 
background
2.   Dilation steps on the mask to 
slowly include more perilesional 
volume
3.   Repeat for 10 lesions of average 
size (~15mm3)
4.   Report average prediction score on !, and number of predictions per 
dilation step

(A): FLAIR masked out with dilation steps 1, 
5 and 24 (top), and the corresponding output 
probability maps (bottom). (B): Plots 
representing the number of segmented lesions 
(top) and the average and standard deviation 
across patients of the mean prediction score 
(bottom) at each dilation step.

28

(B)(A)



EXPLAINABLE AI (XAI)

• Opening the black box: revealing the internal mechanisms of  
complex deep models 

• Multiple Sclerosis (MS): automatic segmentation of White Matter 
Lesions (WML) as biomarkers of diagnosis and progression 

• XAI: understanding the model 
• What triggers a WML detection ?

6 experiments - perilesional volume
● Extent of contextual information 

for a robust prediction?

1.   Start from a lesion inside a black 
background
2.   Dilation steps on the mask to 
slowly include more perilesional 
volume
3.   Repeat for 10 lesions of average 
size (~15mm3)
4.   Report average prediction score on !, and number of predictions per 
dilation step

FLAIR masked out with dilation steps 1, 5 and 24 (top), and the corresponding output probability maps (bottom).

27

6 experiments - perilesional volume
● Extent of contextual information 

for a robust prediction?

1.   Start from a lesion inside a black 
background
2.   Dilation steps on the mask to 
slowly include more perilesional 
volume
3.   Repeat for 10 lesions of average 
size (~15mm3)
4.   Report average prediction score on !, and number of predictions per 
dilation step

(A): FLAIR masked out with dilation steps 1, 
5 and 24 (top), and the corresponding output 
probability maps (bottom). (B): Plots 
representing the number of segmented lesions 
(top) and the average and standard deviation 
across patients of the mean prediction score 
(bottom) at each dilation step.

28

(B)(A)

• Detection triggered if 
• Hyperintense signal in FLAIR 
• Surrounded by ~10-15mm of healthy WM 

• Yields insights on which lesions will be missed by the model 
• Can be used to optimize network design 

• E.g. patch size
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Deep learning• Quantitative feature extraction 

• Intensity, shape, margin, texture 
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40],  the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42]. This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44]. Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.
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metabolic  nodes  in  the  mediastinum  [37].  However,  the
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based  on  PET-CT  staging,  the  negative  predictive  value  for
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[39,40], the  European  Society  for  Medical  Oncology  (ESMO)
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transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
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of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8) and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42]. This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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• AI-augmented medical information systems 
have tremendous potential for personalized  
medicine 

• AI is a perfect match to mine complex multimodal imaging 
• Segmentation is 

more mature than 
outcome prediction 

• Task synergy and large  
models arriving in 
radiology 
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PRECISION ONCOLOGY

4

• Goals: (A) Identify the state of a patient-disease pair and  
(B) Establish optimal treatment plan 

• Method: Compare to previously documented cases/guidelines 
in terms of multimodal data 

• Multidisciplinary Tumor Boards (MTB) 

• Currently mostly based on guidelines  
and experience, confronted across  
medical/technical specialties 

• Tomorrow’s MTBs augmented with 
Artificial Intelligence (AI)-based  
multimodal information aggregation

complementary and supplementary information in modalities; if
unimodal data are noisy or incomplete, supplementing redun-
dant information from other modalities can improve the robust-
ness and accuracy of the predictions. AI-driven data fusion stra-
tegies (Baltru!saitis et al., 2018) can be divided as early, late, and
intermediate (see Figure 3).

Early fusion
Early fusion integrates information from all modalities at the input
level before feeding it into a single model. The modalities can be
represented as raw data, hand crafted, or deep features. The
joint representation is built through operations such as vector
concatenation, element-wise sum, element-wise multiplication

Figure 3. Multimodal data fusion
(A) Early fusion builds a joint representation from raw data or features at the input level, before feeding it to the model.
(B) Late fusion trains a separate model for each modality and aggregates the predictions from individual models at the decision level.
(C–E) In intermediate fusion, the prediction loss is propagated back to the feature extraction layer of each modality to iteratively learn improved feature repre-
sentations under the multimodal context. The unimodal data can be fused (C) at a single level or (D) gradually in different layers.
(E) Guided fusion allows the model to use information from one modality to guide feature extraction from another modality.
(F) Key for the symbols used.
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a  SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38]. In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40],  the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8)  and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44]. Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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Figure 4. Pre-surgery imaging of a 46-year-old patient with right shoulder pain related to a mass at the apex of the right lung (Pancoast
tumor). FDG PET-CT shows an isolated, hypermetabolic, necrotic mass. Surgery revealed a weakly differentiated large cell neuroendrine
carcinoma of diameter 11 cm, and staged as pT3 pN1; a: PET, MIP image; b: Fused PET-CT image in the axial plane, bone window: the tumor
has spread to the thoracic wall; c: Fused PET-CT image in the coronal plane, mediastinal window.

evaluated  based  on  a SUV  threshold  of  2.5  [37]. The  authors
of  this  study  concluded  that  owing  to  the  insufficient
sensitivity  of  PET-CT  (approx.  80%),  invasive  mediastinal
investigation  is  required,  even  in  the  absence  of  hyper-
metabolic  nodes  in  the  mediastinum  [37].  However,  the
results  of  the  studies  included  in  the  meta-analysis  were
particularly  heterogeneous.  In  another  meta-analysis  includ-
ing  1,122  patients  (10  studies)  with  T1-T2  N0  lung  cancer
based  on  PET-CT  staging,  the  negative  predictive  value  for
N2  lymph  node  involvement  was  93%  [38].  In  line  with  the
data  of  this  latter  meta-analysis  [38]  and  other  reviews
[39,40],  the  European  Society  for  Medical  Oncology  (ESMO)
[41]  recently  recommended  not  to  perform  complemen-
tary  cytology  or  pathology  investigations  (mediastinocsopy,
transtracheal,  transbronchial  or  transesophageal  needle
aspiration)  if  no  hypermetabolic  lymph  nodes  are  detected
by  PET,  except  in  the  following  situations:  long  axis  diameter
of  main  tumor  >  3  cm,  central  tumor  (Fig.  5),  cN1  disease  and
lymphadenopathy  with  a  short  axis  diameter  >  1  cm  as  deter-
mined  by  CT.  The  guidelines  issued  by  the  Institut  National
du  Cancer  (INCa)  are  slightly  different  and  do  not  take  into
account  the  size  of  the  tumor.  INCa  recommends  invasive
mediastinal  investigation  in  the  absence  of  hypermetabolic
mediastinal  nodes  on  PET  images  in  the  following  situations:
central  tumor  (Fig.  5),  doubts  about  hilar  node  involve-
ment,  short  axis  diameter  of  a  mediastinal  node  >  16  mm
as  determined  by  CT,  low  uptake  by  the  primary  tumor
(Fig.  6).

The  positive  predictive  value  of  PET  is  lower.  Indeed,
because  of  the  potential  substantial  therapeutic  conse-
quences,  histological  assessment  should  always  be  discussed
for  patients  with  significant  mediastinal  uptake  to  exclude
false-positives  caused  by  inflammation  or  infection  (Fig.  7).

Evaluating metastatic spread
FDG  PET-CT  performs  well  for  detecting  occult  metastases
in  soft  tissue,  in  distant  lymph  nodes,  in  the  viscera  (lungs,
liver,  adrenal  glands,  etc.)  (Fig.  8)  and  in  bone.  It  also
proves  very  useful  for  investigating  pleural  effusion  or  a
contralateral  nodule  (M1  involvement).  However,  specific
morphological  imaging  must  be  performed  in  addition  to  FDG
PET  to  detect  brain  metastases.

The  important  role  of  PET-CT  in  metastatic  staging  has
been  highlighted  by  recent  meta-analyses.  In  a  first  study,
the  performance  of  PET-CT  for  diagnosing  metastases  was
assessed,  irrespective  of  the  type  of  metastases  [42].  This
meta-analysis  included  9  studies  (780  patients)  and  reported
an  overall  sensitivity  and  specificity  for  PET  of  93%  and  96%,
respectively.

Two  other  studies  focused  more  specifically  on  bone
metastasis  staging  [43,44].  Both  demonstrated  that  FDG  PET
performed  well.  The  sensitivity  of  PET  was  found  to  be
greater  than  90%,  which  is  similar  to  bone  scintigraphy  and
well  above  MRI  (approx.  80%).  The  specificity  of  the  differ-
ent  imaging  techniques  was  similar:  94.6%  for  PET,  96.3%
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• Automation of time-consuming and error-prone tasks to  
free human time for more interesting/challenging tasks 
• E.g. longitudinal lesion segmentation and volumetric response assessment: 

the TARGET project for brain metastases

CONCLUSIONS
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• Achieving trustworthy AI is a multifaceted challenge (1/2) 
• Generalization 

(Petzschner et al. 2024, Jimenez-Del-Toro et al. 2021, Temple et al. 2024,  
Oumoumi et al. 2024, Buvat et al. 2019) 
• Define the targeted population  

(disease, treatment, imaging equipment1) 

• Data quality: not underestimate data curation 

• Importance of reporting/publishing negative results 

• Allow domain experts to formulate and test their  
hypotheses themselves  
• Importance of “no-code” and  

domain-specific AI platforms  
and education
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Petzschner FH et al. (2024). Practical challenges for precision medicine. Science (New York, N.Y.), 383(6679), 149–150. 
Jimenez-Del-Toro O et al. (2021). The Discriminative Power and Stability of Radiomics Features With Computed Tomography Variations Task-Based Analysis in an Anthropomorphic 
3D-Printed CT Phantom. Invest Radiol, 56(12), 820–825. 
Temple SWP et al. (2024). Gross failure rates and failure modes for a commercial AI-based auto-segmentation algorithm in head and neck cancer patients.  
Journal of Applied Clinical Medical Physics, e14273. 
Omoumi P et al. (2024). Independent Evaluation of Commercial Diagnostic AI Solutions: A Necessary Step toward Increased Transparency. Rad., 310(1). 
Buvat I et al. (2019). The Dark Side of Radiomics: On the Paramount Importance of Publishing Negative Results. J. Nuc. Med., 60(11). 

1 https://github.com/QA4IQI/qa4iqi.github.io, Feb 2024 

and GBM are shown in Fig. 3. Details, including the number
of times each feature was selected and the mean variable im-
portance of the selected features during cross-validation, are
summarized in Supplemental Table 1.

The AUCs of the three radiologists were 0.707 (95 % CI
0.622–0.793), 0.759 (95 % CI 0.656–0.861), and 0.695 (95 %
CI 0.590–0.800) for readers 1, 2 and 3, respectively. The tenth
percentile of ADC was significantly lower in PCNSL than in
GBM (686.3 × 10-3 mm2/s vs. 785.2×10-3 mm2/s; p = 0.006
[Student’s t-test]), and the AUC of the tenth percentile of ADC
for differentiating between PCNSL and GBMwas 0.684 (95%
CI0.560–0.809). In comparing diagnostic performances, the
AUC of the radiomics classifier was significantly higher than
those of the three radiologists and ADC (p< 0.001 for all)
(Fig. 4). Representative cases in which diagnoses were corrected
using the radiomics approach are shown in Figs. 5 and 6.

Discussion

In this study, we assessed the diagnostic value of radiomics in
differentiating between non-necrotic enhancing GBM and
PCNSL. Atypical GBM without necrosis may not be

distinguishable from PCNSL based on gross visual inspection
of conventional MR images [6–8]. We used large-scale
radiomics to extract information from conventional MR im-
ages to detect differences that were not perceptible by visual
inspection. We found that a radiomics-based machine-learn-
ing classifier yielded excellent performance for differentiating
between PCNSL and atypical GBM, yielding higher diagnos-
tic values than visual analysis, radiologists or use of the ADC.
Given that conventional sequences are routinely used, our
results indicate that radiomics is useful for augmenting the
diagnostic performance of radiologists’ visual analyses for
differentiating between PCNSL and atypical GBM, and can
be widely performed without requiring additional scans.

Previous studies have used various techniques to discrimi-
nate between PCNSL and GBM. Several studies have reported
that PCNSL has significantly lower ADC and relative cerebral
blood volume (rCBV) values in perfusion-weighted images,
and higher Ktrans values from dynamic contrast-enhanced MR
images than GBM [10, 12, 14, 21, 22]. These results can be
explained by differences in the underlying pathophysiology
between the two disease entities. Histologically, PCNSLs have
poorer and more permeable neovascularisation, and a higher
degree of cellularity than GBMs [5, 6, 11, 21, 23, 24]. These
microscopic differences are also related to different findings in
conventionalMRI, such as necrosis in GBM and homogeneous
enhancement without necrosis in PCNSL. Therefore, even if
conventional MRI findings do not differ significantly by visual
inspection, conventional MRI may still reflect underlying,

Fig. 4 Receiver operating characteristic curve analysis of radiomics
random forest (RF) classifiers, three readers and apparent diffusion
coefficient (ADC) for the differentiation between primary central nervous
system lymphoma and atypical glioblastoma. The mean area under the
curve (AUC) for the radiomics RF classifier (0.921) was significantly
higher than those for the three readers and ADC (AUC: 0.707, 0.759,
0.695 and 0.684 for readers 1, 2, 3 andADC, respectively) (p< 0.001 for all)

Fig. 3 Heat map of the selected features of radiomics classifiers for
differentiating between primary central nervous system lymphoma
(PCNSL) and atypical glioblastoma (GBM)
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• QuantImage v2: the Feature Explorer 
• Management of feature collections for a given album 

• Patient outcomes/labels upload 

• Creation of specific feature sub-collections 

• Feature visualization and relation to outcomes 

• Machine learning model training and validation
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SPHN QA4IQI (2019-2021)
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• Quality Assessment for Interoperable Quantitative  
CT-Imaging (QA4IQI) 
• 8 groups of CT recon. parameter variations including 

• 2 recon. algorithms, 4 recon. kernels, 4 slice thicknesses, 3 slice spacings  

pyRadiomics (86) 
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deepLearn (30)
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• Achieving trustworthy AI is a multifaceted challenge (2/2) 
• Involve the international community  

• Open data and scientific challenges 

• Discuss process definition, software implementation and good practices: standardization2 

(Zwanenburg et al. 2020) 

• Integration and ergonomy: do not disrupt existing workflows 

• Tailor XAI to gain insights about the internal rules of complex deep models 
• Reveal how “stupid” is the model (Kaufman et al. 2023) 

• Create a core group with interdisciplinary skills and passion!  

• Know each other’s  
strengths and motivation
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Zwanenburg A et al. (2020). The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput  
Image-based Phenotyping. Radiology, 295(2), 328–338. 
Kaufman RA et al.. (2023). Explainable AI And Visual Reasoning: Insights From Radiology. 23. https://arxiv.org/abs/2304.03318v1 
2 https://theibsi.github.io/, Feb 2024

https://theibsi.github.io/


and GBM are shown in Fig. 3. Details, including the number
of times each feature was selected and the mean variable im-
portance of the selected features during cross-validation, are
summarized in Supplemental Table 1.

The AUCs of the three radiologists were 0.707 (95 % CI
0.622–0.793), 0.759 (95 % CI 0.656–0.861), and 0.695 (95 %
CI 0.590–0.800) for readers 1, 2 and 3, respectively. The tenth
percentile of ADC was significantly lower in PCNSL than in
GBM (686.3 × 10-3 mm2/s vs. 785.2×10-3 mm2/s; p = 0.006
[Student’s t-test]), and the AUC of the tenth percentile of ADC
for differentiating between PCNSL and GBMwas 0.684 (95%
CI0.560–0.809). In comparing diagnostic performances, the
AUC of the radiomics classifier was significantly higher than
those of the three radiologists and ADC (p< 0.001 for all)
(Fig. 4). Representative cases in which diagnoses were corrected
using the radiomics approach are shown in Figs. 5 and 6.

Discussion

In this study, we assessed the diagnostic value of radiomics in
differentiating between non-necrotic enhancing GBM and
PCNSL. Atypical GBM without necrosis may not be

distinguishable from PCNSL based on gross visual inspection
of conventional MR images [6–8]. We used large-scale
radiomics to extract information from conventional MR im-
ages to detect differences that were not perceptible by visual
inspection. We found that a radiomics-based machine-learn-
ing classifier yielded excellent performance for differentiating
between PCNSL and atypical GBM, yielding higher diagnos-
tic values than visual analysis, radiologists or use of the ADC.
Given that conventional sequences are routinely used, our
results indicate that radiomics is useful for augmenting the
diagnostic performance of radiologists’ visual analyses for
differentiating between PCNSL and atypical GBM, and can
be widely performed without requiring additional scans.

Previous studies have used various techniques to discrimi-
nate between PCNSL and GBM. Several studies have reported
that PCNSL has significantly lower ADC and relative cerebral
blood volume (rCBV) values in perfusion-weighted images,
and higher Ktrans values from dynamic contrast-enhanced MR
images than GBM [10, 12, 14, 21, 22]. These results can be
explained by differences in the underlying pathophysiology
between the two disease entities. Histologically, PCNSLs have
poorer and more permeable neovascularisation, and a higher
degree of cellularity than GBMs [5, 6, 11, 21, 23, 24]. These
microscopic differences are also related to different findings in
conventionalMRI, such as necrosis in GBM and homogeneous
enhancement without necrosis in PCNSL. Therefore, even if
conventional MRI findings do not differ significantly by visual
inspection, conventional MRI may still reflect underlying,

Fig. 4 Receiver operating characteristic curve analysis of radiomics
random forest (RF) classifiers, three readers and apparent diffusion
coefficient (ADC) for the differentiation between primary central nervous
system lymphoma and atypical glioblastoma. The mean area under the
curve (AUC) for the radiomics RF classifier (0.921) was significantly
higher than those for the three readers and ADC (AUC: 0.707, 0.759,
0.695 and 0.684 for readers 1, 2, 3 andADC, respectively) (p< 0.001 for all)

Fig. 3 Heat map of the selected features of radiomics classifiers for
differentiating between primary central nervous system lymphoma
(PCNSL) and atypical glioblastoma (GBM)
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• Links & info  
• QuantImage v2  

https://medgift.github.io/quantimage-v2-info/ 

• HECKTOR challenge 
https://hecktor.grand-challenge.org/ 

• MedGIFT group 
https://medgift.hevs.ch/ 

• Image Biomarker Standardisation  
Initiative (IBSI) 
https://theibsi.github.io/ 

• MSxplain 
https://wp.unil.ch/mial/research/projects/msxplain/  

• QA4IQI 
https://github.com/QA4IQI/qa4iqi.github.io 

THANK YOU                                            ADRIEN.DEPEURSINGE@HEVS.CH
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